FROM HALOQUINOLINES AND HALOPYRIDINES TO QUINOLINE- AND PYRIDINESULFONYL CHLORIDES AND SULFONAMIDES #

Andrzej Maślankiewicz,a) * Krzysztof Marciniec,a) Maciej Pawłowski,b) and Paweł Zajdelb)

a) Department of Organic Chemistry, The Medical University of Silesia Jagiellońska 4, 41-200 Sosnowiec, Poland
b) Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
E-mail: maslankiewicz@slam.katowice.pl

Abstract – The action of sodium methanethiolate (in boiling DMF) towards haloazines (i.e. chloro- or bromo-pyridines and quinolines) (1) (with halogen substituent in non-aza-activated position) causes sequentially halogen ipso-substitution to methylthioazines (2) and then S-demethylation to azinethiolates (3A), which were: i) subjected to S-methylation, ii) oxidized to diazinyldisulfides (4) and iii) oxidatively chlorinated to azinesulfonyl chlorides (5). α- and γ-pyridine- and quinolinesulfonyl chlorides (5a, 5c, 5d and 5f) were prepared by oxidative chlorination of respective disulfides (4) performed in conc. hydrochloric acid and characterized by 1H and 13C NMR spectra. All azinesulfonyl chlorides (5) were effectively converted to corresponding azinesulfonamides (6).

INTRODUCTION

Compounds containing an azinesulfamoyl moiety are of considerable interest since they exhibit diverse biological activities with numerous therapeutic applications.¹ They have been shown to inhibit several enzymes as well as to modulate the activity of many receptors. Several pyridinesulfonamides showed antitumor activity,² while 4-amino-3-pyridinesulfonylurea derivatives, including drug e.g. torasemide, were potent diuretic agents.³ Some quinolinesulfamoyl derivatives exerted anti-HIV-1 activity,⁴,⁵ other displayed neuroprotective, antistroke, anticancer or antiviral properties.¹ They also inhibited carbonic anhydrase and thus acted as very potent antidiabetics, diuretics or topically acting antiglaucoma agents.⁶ Furthermore, quinolinesulfonamides showed antiinflammatory and immunomodulating properties⁷ as
well being classified as potent and selective β_3 receptor agonists with therapeutic potential for the treatment of diabetes type II and obesity.8,9 Next, the quinolinesulfonamide moiety has been recently found in compounds acting through the CNS receptor9 and compounds targeting pathomechanisms involved in Alzheimer’s disease.10

Azinesulfonic acids (sometimes in the form of their sodium salt) with the sulfonic substituent in the \textit{aza}-activated position can be obtained in reactions of haloazines with sodium sulfite,11,12 or by careful oxidation of respective thioazines.11-15

Azinesulfonic acid with the sulfonic substituent in \textit{non-aza}-activated position can be prepared by direct sulfonation,16,17,18 by oxidation of respective thioazines11,15 or by work-consuming cyclisation.17,19,20 To the best of our knowledge, there exists no general preparative method for isomeric azinesulfonic acids. As the azinesulfamoyl moiety is more and more frequently incorporated in molecules of biologically active compounds,1-10 we considered elaboration of a more universal method of preparation of azinesulfonyl chlorides as a source of building blocks for the generation of azinesulfonic acid derivatives libraries.

RESULTS AND DISCUSSION

We chose haloazines (pyridines and quinolines) (1) as common substrates since they are easily available derivatives of azines21,22 and because \textit{sulfido-de-halogenation} in haloazines was mentioned several times in the literature.23-27 The key-inspiration for the present study comes from the paper of Testaferrri, Tiecco, Tingoli \textit{et al.},27 who stated that treatment of haloarenes and some haloheteroarenes with an excess of sodium alkanethiolate could be arranged as a \textit{one-pot} process, leading directly and effectively to sodium arene- or azinethiolates. Whereas the authors mentioned above trapped thiolates by methylation,27 we decided to trap azinethiolates (3A) by oxidation, first to diazinyldisulfides (4) and then to azinesulfonyl chlorides (5).

In the case of azinesulfonyl chlorides (5b, e, g, h, i, j and k) with the sulfonyl group in the \textit{non-aza}-activated position, the experimental protocol was composed of three main stages discussed in details below: i) preparation of methylthioazines (2) or azinethiolates (3A) from haloazines (1) and sodium methanethiolate, ii) oxidation of crude azinethiols (3) or azinethiolates (3A) to diazinyldisulfides (4) or to azinesulfonyl chlorides (5), iii) amination of 5 to azinesulfonamides (6). In the first stage, sodium methanethiolate (\textit{ca.} 1.5 mol. eqv.) in boiling DMF (within 1 h) appeared to be sufficiently reactive for the purpose of \textit{methylthio-de-halogenation} of bromo- and chloroazines (1) to methylthioazines (2) (yield up to 60 %) accompanied by azinethiolates (3A) (\textit{ca.} 21-25 %) (Table, entries 7.1, 8.1). Furthermore, methylthioazines (2) treated within the same reaction system underwent complete \textit{methylthio-S-demethylation} to azinethiolates (3A). To remove the excess of methanethiol derivatives, the mixture
was evaporated to dryness, diluted with cold water, acidified with conc. hydrochloric acid and the volatile compounds were evaporated under vacuum. The resulting mixture of azinethiol (3) and inorganic salts was either oxidized to diazinyl disulfides (4) with potassium ferricyanide\(^{28}\) or subjected to oxidative-chlorination (‘wet’-chlorination)\(^{29}\) to azinesulfonyl chlorides (5). Both sub-stages with the use of sodium methanethiolate could be combined and arranged after oxidation as a process leading directly from haloazine (1) to disulfides (4) or to azinesulfonyl chlorides (5). Due to the low basicity of azinesulfonyl chlorides (5), they were precipitated from acetic acid or conc. hydrochloric acid solutions by dilution with water.

![Scheme](image)

Azinesulfonyl chlorides (5b, e, g, h, i, j) were stable when stored at room temperature except 4-isoquinolinesulfonyl chloride (5k), which underwent partial decomposition with evolution of sulfur dioxide even at 5 °C. All azinesulfonyl chlorides (5) were successfully converted to the respective azinesulfonylamides (6).

Introduction of thio-substituent by replacement of halogen in azine aza-activated positions is much easier than in other isomers. High reactivity of halogen substituent at α- and γ-positions of azines toward the action of S-nucleophiles was observed in reactions with sodium sulfide,\(^{23a,b, 24}\) potassium hydrogen sulfide,\(^{25,26}\) sodium alkane and arenethiolates,\(^{27,30}\) sodium thiosulfate,\(^{31}\) thiourea,\(^{32,33}\) and even in reactions with sodium sulfite.\(^{11,12}\)

Divalent sulfur derivatives of azines (thiones vs thiols, disulfides) could be oxidized to the respective azinesulfonic acids by careful oxidation of respective thioazines.\(^{11-15}\) However, none of azinesulfonic acids or of their sodium salts (with sulfonic substituent in the aza-activated position) could be converted to azinesulfonyl chloride after treatment with phosphorus chlorides (PCl\(_3\) or POCl\(_3\))\(^{34,13}\) or with thionyl chloride \(^{11}\) as well as with benzylidyne chloride.\(^{34}\) Nevertheless, oxidative-chlorination performed in
80% aqueous acetic acid (gaseous chlorine, 0-20 °C) also causes final splitting of C(α- or γ-azinyl)-S-bond and leads to chloroazine and sulfate anion.29

Table

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate or substrate system</th>
<th>Product, yield [%], procedure</th>
<th>Sulphonamide 6, 7i (yield) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>N\textsubscript{2}S\textsubscript{4a}</td>
<td>N\textsubscript{Cl}N\textsubscript{SO\textsubscript{2}Cl} (1a) (82)</td>
<td>N\textsubscript{SO\textsubscript{2}NH\textsubscript{2}} (6a) (62)</td>
</tr>
<tr>
<td>2.</td>
<td>N\textsubscript{Br} + MeSNa</td>
<td>N\textsubscript{S}\textsubscript{2}N\textsubscript{SO\textsubscript{2}Cl} (4b) (82)</td>
<td>N\textsubscript{SO\textsubscript{2}NH\textsubscript{2}} (6b) (86)</td>
</tr>
<tr>
<td>3.</td>
<td>N\textsubscript{2}S\textsubscript{4c}</td>
<td>N\textsubscript{SO\textsubscript{2}Cl} (5c) (6), 8)</td>
<td>N\textsubscript{SO\textsubscript{2}NH\textsubscript{2}} (6c) (32)</td>
</tr>
<tr>
<td>4.</td>
<td>N\textsubscript{2}S\textsubscript{4d}</td>
<td>N\textsubscript{Cl}N\textsubscript{SO\textsubscript{2}Cl} (1c) (92)</td>
<td>N\textsubscript{SO\textsubscript{2}NH\textsubscript{2}} (6d) (78)</td>
</tr>
<tr>
<td>5.</td>
<td>N\textsubscript{Br} + MeSNa</td>
<td>N\textsubscript{S}\textsubscript{2}N\textsubscript{SO\textsubscript{2}Cl} (5e) (88)</td>
<td>N\textsubscript{SO\textsubscript{2}NH\textsubscript{2}} (6e) (91)</td>
</tr>
<tr>
<td>6.</td>
<td>N\textsubscript{2}S\textsubscript{4f}</td>
<td>N\textsubscript{SO\textsubscript{2}Cl} (5f) (6), 8)</td>
<td>N\textsubscript{SO\textsubscript{2}NH\textsubscript{2}} (6f) (67)</td>
</tr>
<tr>
<td>7.</td>
<td>N\textsubscript{Br} + MeSNa</td>
<td>N\textsubscript{S}\textsubscript{2}N\textsubscript{SO\textsubscript{2}Cl} (4g) (75)</td>
<td>N\textsubscript{SO\textsubscript{2}NH\textsubscript{2}} (6g) (92)</td>
</tr>
<tr>
<td>7.1.</td>
<td>N\textsubscript{Br} + MeSNa</td>
<td>N\textsubscript{S}\textsubscript{2}N\textsubscript{SO\textsubscript{2}Cl} (5g) (86)</td>
<td>N\textsubscript{SO\textsubscript{2}NH\textsubscript{2}}</td>
</tr>
<tr>
<td>8.</td>
<td>X\textsubscript{N} + MeSNa(K)</td>
<td>N\textsubscript{S}\textsubscript{2}N\textsubscript{SO\textsubscript{2}Cl} (4h) (88)</td>
<td>N\textsubscript{SO\textsubscript{2}NH\textsubscript{2}} (6h) (87)</td>
</tr>
</tbody>
</table>
1) Procedure A; 2) Procedure B; 3) Procedure C; 4) Procedure D; 5) Procedure E; 6) Procedure F; 7) Procedure G. 8) Non-isolated in the pure form, characterized by ¹H and ¹³C NMR spectra as well as by amination. 9) Could be also prepared from 2(¹H)-pyridinethione, ref., 5, 26, 34, 40. 10) Prepared also from 4(¹H)-pyridinethione, ref., 34. 11) Prepared also from 2(¹H)-quinolinethione, ref., 35. 12) Potassium thiomethanolate was used for the reaction with chloroquinolines (1f) and (1h). 13) Characterized by methylation in the form of methylthioquinoline (2).

The same treatment of 2(¹H)-quinolinethione or 2,2’-diquinolinyl disulfide (4d), performed in the course of this work, also led to 2-chloroquinoline in 92 % yield. Fortunately, Talik and Płażek 34 discovered that careful treatment of conc. hydrochloric acid solution of 2(¹H)-pyridinethione and even 4(¹H)-pyridine thione with gaseous chlorine at -10 ºC – 0 ºC may be a preparative source of 2- and 4-pyridinesulfonyl chlorides (5a and 5c). Although both isomers are very unstable compounds, the 2-isomer 5a could be isolated in pure form (at – 70 ºC) and characterized by elemental analysis. However, due to the instability of the 4-isomer 5c, its solutions should be immediately consumed in further processes, e.g. amination. 34 Talik and Płażek’s procedure 34 was confirmed later for 2-pyridinesulfonyl chloride (5a) 5, 40 and was applied to the preparation of 3- and 4-quinolinesulfonyl chlorides (5e and 5f), 26 however both isomers were not obtained in the pure form, moreover, the mp’s of compound 5f (109-111 ºC) 26 is according to our experience not possible to reach. The preparation of 2-quinolinesulfonyl chloride (5d) by chlorination of 2(¹H)-quinolinethione in water and in the presence of ferric chloride was also mentioned in a French patent. 35

The chlorination of hydrochloric acid solution of all thioazines (3 and 4) was successfully applied to the preparation of all quinoline- and pyridinesulfonyl chlorides (5) described in this paper. (see Table) Stability of (5d and 5f) was the same as that of the corresponding pyridine derivatives (5a and 5c). Azinesulfonyl chlorides 5a, 5c, 5d and 5f were too unstable to be isolated and stored in the pure state, as

<table>
<thead>
<tr>
<th>8.1</th>
<th>9.</th>
<th>10.</th>
<th>11.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
they underwent decomposition to sulfur dioxide and the respective chloroazines. However, immediately after the synthesis, compounds 5a, 5c, 5d and 5f could be extracted with cold (0 °C) deuterochloroform, and fully characterized (at 10 °C, up to 1 h) with 1H and 13C NMR spectra, which exhibited substituent effects (Δδ) typical for chlorosulfonyl group observed for other isomers of chlorosulfonylazines (5). Additionally, both NMR spectra showed that content of compounds 5a, 5c, 5d and 5f in CDCl3 solution ranged from 90 up to 95 % (or 99 % for 5a) contaminated with the respective chloropyridine or chloroquinoline (1). Azinesulfonyl chlorides (5a, c, d and f) were successfully converted to the respective azinesulfonamides (6a, c, d and f).

The structure of all thioazine derivatives (2, 4, 5 and 6) were proved by 1H NMR spectral data and mp’s of our products fit well the literature data of all known compounds except 7-quinolinesulfonic acid derivatives (5i and 6i) mentioned in the old papers of Claus.36

CONCLUSIONS

Our results (collected in Table) supplemented by corresponding literature data (mentioned as sub-scripts to the Table) prove that both types of azinesulfonyl chlorides (5) with chlorosulfonyl group in non-aza-activated position 5(b, e, g, h, i, j, k) and aza-activated position 5(a, c, d, f) are available as isolable compounds by oxidative chlorination of the respective thioazines (3) or (4), which allows to omit the stage of isolation of azinethiol (3) and azinesulfonic acid for non-aza-activated isomers. This approach is advantageous over the method of the Barrett’s group,37 for formation of azinesulfonyl chloride in the reaction of azinemetalic derivatives with sulfuryl chloride, which makes even the isolation of crude azinesulfonyl chloride very difficult or impossible and, moreover, may reduce the application of these azinesulfonyl chlorides to couple with the molecules of biologically active compounds.

Close approach concerning mainly α-pyrimidine- and α-pyridinesulfonyl chlorides and fluorides based on the oxidation of azinethiols with hypochlorite systems has been recently reported.44

Key-entry to the synthesis of non-aza-activated thioazines isomers (3) and (4) comes from the reaction of haloazines (1) with an excess of sodium methanethiolate as a source of azinethiolates (3A), diazinyl disulfides (4) or methylthioazines (2).

EXPERIMENTAL

Melting points were taken in open capillary tubes and are uncorrected. All NMR spectra were recorded on a Bruker AVANCE 400 spectrometer operating at 400.22 and 100.64 MHz for 1H and 13C nuclei, respectively, in deuterochloroform or in hexadeuterodimethylsulfoxide solutions with tetramethylsilane (δ 0.0 ppm) as internal standard. The COSY experiments were performed using standard Bruker program. TLC analyses were performed employing Merck's aluminium oxide 60 F254 neutral (type E) plates and
using a mixture of CHCl₃ / EtOH, 10:1, v/v as an eluent. Chloro- and bromoquinolines (1e), (1f), (1g), (1h), (1i), (1j) were obtained by Skraup synthesis. 3-Bromoquinoline (1d) and 4-bromoisoquinoline (1k) were prepared as described by Kress and Costantino. 3-Bromopyridine (1b), 2,2'-bispyridinyl disulfide (4a) and 4,4'-bispyridinyl disulfide (4c) were commercial products. 2,2'-Bisquinolinyl disulfide (4d) and 4,4'-bisquinolinyl disulfide (4f) were prepared by oxidation of the respective quinolinethiones with aqueous potassium ferricyanide. Sodium methanethiolate was prepared by dissolving methanethiol (1 mol. eqv.) in cold (-5 °C) 5 % solution of sodium methoxide (1 mol. eqv.) in methanol under argon atmosphere. The volatile compounds were then evaporated to dryness under vacuum. Potassium methanethiolate was prepared in the same manner.

Reactions of haloazines (1) with sodium (or potassium) methanethiolate:

• **General procedure A**, leading to azinethiolate (3A) or crude (non-isolated) azinethiol (3).

A mixture of haloazine (1) (4 mmol), sodium methanethiolate (1.4 g, 20 mmol) and dry DMF (12 mL) was boiled with stirring under argon atmosphere for 4 h. (The reaction must be carried out in hood as it proceeded with strong evolution of dimethyl sulfide). It was then cooled to 50 °C and the volatile components were evaporated under vacuum from water bath (ca. 70 °C). The residue was dissolved in 5 mL of water and this solution was cooled down in an ice-water bath and then (under argon atmosphere) carefully acidified with 8 mL of 20 % hydrochloric acid. The mixture was again concentrated under vacuum up to 1/3 volume. This residue contains crude (non-isolated) azinethiol and could be used for the preparation of disulfides or azinesulfonyl chlorides as described below.

• **Procedure B**, leading to methylthioazines (2) (Table, entries 7.1 and 8.1)

A mixture of haloazine (1) (4 mmol), sodium methanethiolate (0.42 g, 6 mmol) and dry DMF (12 mL) was boiled with stirring under argon atmosphere for 1.5 h and then treated as in procedure A. The residue (after concentration of hydrochloric acid solution) was poured into cold (5 °C) solution of 8.5 % aqueous NaOH (22 mL). The neutral products were extracted with CH₂Cl₂ (3 x 10 mL). The extracts were combined, washed with cold water (2 x 5 mL) and dried with anhydrous sodium sulfate. The solvent was next distilled off and the residue was subjected to TLC analysis which reveals complete consumption of the starting haloazine (1). Methylthioazine (2) was separated by column chromatography (silicagel 60 / CHCl₃).

The aqueous layer contains some amounts of azinethiolate (3A) and could either be methylated with methyl iodide (0.12 mL, 2 mmole) to the second portion of methylthioazine (2) (isolated by extraction with CH₂Cl₂ as above) or oxidized to disulfide (4) as described below.

• **Procedure C**, demethylation of methylthioazine (2) with sodium methanethiolate (Table, entry 5.1)

A mixture of methylthioazine (2) (4 mmol), sodium methanethiolate (0.84 g, 12 mmol) and dry DMF
(12 mL) was boiled with stirring under argon atmosphere until the evolution of dimethyl sulfide ceased (ca. 1.5 h) and then treated as in procedure A. Azinethiolate (3A) was trapped and characterized by methylation (as described above) or by oxidation as presented below.

Procedure D, preparation of diazynyl disulfides (4)
A solution of crude azinethiol (3) prepared from haloazine (1) (general procedure A) or by S-demethylation of methylthioazine (2) (procedure C) in 8.5 % aqueous NaOH (52 mL) was dropped on stirring at rt during 15 min into 8 % aqueous K$_3$Fe(CN)$_6$ (260 mL) and then stirred for 15 min. The precipitate of solid disulfides (4) was filtered off and finally recrystallized from 50 % aqueous EtOH. 3,3'-Dipyridinyl disulfide (4b) was isolated by extraction with CHCl$_3$ (3 x 20 mL), the extracts were dried with anhydrous Na$_2$SO$_4$ and then subjected to typical work-up to give oily compound (4b) (82 %).

Preparation of azinesulfonyl chloride (5) from crude azinethiol (3A) (obtained according to procedure A) or from diazynyl disulfide (4) (prepared according to procedure D).

Procedure E, chlorination in 80 % AcOH, for isomers with thio-substituent in non-aza-activated position:
• for diazynyl disulfide (4). Gaseous chlorine was passed through a well stirred mixture of diazynyl disulfide (1.8 mmol), 6 mL of CHCl$_3$ and 6 mL of 80 % AcOH cooled at 5 °C at such a rate that temperature was maintained between 15-17 °C. After 15 min. no more heat seemed to be produced. The passage of chlorine was discontinued after 30 min. The mixture was poured into 30 g of ice. The CHCl$_3$ layer was separated, and aqueous layer was extracted with CHCl$_3$ (3 x 5 mL). The CHCl$_3$ extracts were combined, washed with water and dried over. anh. Na$_2$SO$_4$. CHCl$_3$ was evaporated to leave semi-solid residue. Crude sulfonyl chlorides (5) were used for the preparation of azinesulfonamides (6). For analytical purpose azinesulfonyl chlorides (5) were recrystallized from light petroleum (or hexane).
• for crude azinethiol (3). AcOH (15 mL) was added on cooling to the residue containing crude azinethiol (3) (ca. 4 mmol) prepared according to procedure A. The mixture was then chlorinated as for diazynyl disulfides (4) described above.

Procedure F: chlorination in concentrated hydrochloric acid, applied for all isomers of diazynyl disulfides (4) or crude azinethiols (3)
• for diazynyl disulfide (4). Gaseous chlorine was passed through a well stirred solution of azinyl disulfide (1.8 mmol), conc. hydrochloric acid (6.6 mL) and ice (1.5 g) at -10 °C at such a rate that temperature was maintained between –8 to –10 °C. The passage of chlorine was discontinued after 30 min. The mixture was poured onto ice (17 g) and NaHCO$_3$ (2 g) was added in small portions. The product (solid or oil) was extracted with CHCl$_3$ (or CH$_2$Cl$_2$) (3 x 3 mL). Organic layer was washed with ice-cold water (2 x 3 mL)
and dried with anhydrous Na$_2$SO$_4$. The solvent was distilled off under vacuum. Crude sulfonyl chlorides (5) were used for the preparation of azinesulfonamides (6).

- for crude azinethiol (3): Conc. hydrochloric acid (10 mL) was added on cooling to the residue containing crude azinethiol (ca. 4 mmol) prepared according to procedure A. The mixture was then chlorinated as described above for diazinyln disulfides.

Characterization of α- and γ-azinesulfonyl chlorides (5a), (5c), (5d) and (5f)

Compounds 5a, 5c, 5d and 5f were too unstable to be isolated and stored in the pure state, as they underwent decomposition to sulfur dioxide and the respective chloroazine. However, immediately after the synthesis, they could be extracted with cold (0 °C) CDCl$_3$, and fully characterized (at 10 °C, up to 1 h) with 1H and 13C NMR spectra.

The NMR spectra of compounds 5a, 5c, 5d and 5f exhibited substitent effects typical for chlorosulfonyl group observed for other isomers of chlorosulfonylazines (5). Additionally, both NMR spectra showed, that content of compounds 5a, 5c, 5d and 5f in CDCl$_3$ solution ranged from 90 up to 99 % contaminated with 5-10 % of the respective chloropyridine or chloroquinoline (1).

Synthesis of azinesulfonamides (6)

Crude azinesulfonyl chloride (5) (2.5 mmol) and conc. NH$_4$OH (12.5 mL) was stirred at 45 °C for 0.5 h. An excess of ammonia was evaporated under vacuum. Then water was added up to the volume of 10 mL. The solid was filtered off and washed with cold water. It was finally recrystallized from 10 % aqueous EtOH. The best results in the preparation of azinesulfonamides (6a, c, d and f) were obtained when a hydrochloric acid solution of azinesulfonyl chlorides (5a, c, d and f) (resulted from chlorination-procedure F) was treated with two volumes of conc. NH$_4$OH at 0 ºC, and then worked-up as above. However, to remove residual chlorine, before amination, the hydrochloric acid solution was kept at water pump vacuum at 0 ºC for 10 min.

5-Methylsulfanylquinoline (2a)

pale-yellow oil, lit.,17 oil. 1H NMR (CDCl$_3$), δ: 2.58 (s, 3H, SCH$_3$), 7.42-7.45 (m, 2H, H-3 and H-6), 7.63-7.67 (dd, $J = 8.8, 7.2$ Hz, 1H, H-7), 7.91-7.93 (dd, $J = 8.4, 1.6$ Hz, 1H, H-8), 8.60-8.62 (dd, $J = 8.4, 1.6$ Hz, 1H, H-4), 8.91-8.93 (dd, $J = 4.0$ Hz, $J = 1.6$ Hz, 1H, H-2).

6-Methylsulfanylquinoline (2b)

mp 43-45 °C (hexane), lit.,17 mp 44-46 °C. 1H NMR (CDCl$_3$): δ= 2.60 (s, 3H, SCH$_3$), 7.42-7.46 (dd, $J = 8.4, 4.4$ Hz, 1H, H-3), 7.79-7.81 (dd, $J = 8.8, 1.6$ Hz, 1 H, H-7), 7.99-8.00 (m, 2 H, H-5 and H-8), 8.07-8.10 (dd, $J = 8.4, 1.6$ Hz, 1 H, H-4), 8.93-8.95 (dd, $J = 4.4, 1.6$ Hz, 1H, H-2).
3,3'-Bispyridinyl disulfide (4b)
pale-yellow oil, b.temp. 180-183 °C/ 4 mm Hg, lit.,39 b.temp. 155 °C/ 1 mm Hg.

3,3'-Bisquinolinyl disulfide (4e)
mp 150-151 °C (EtOH-water), lit.,17 mp 150-151.5 °C.

5,5'-Bisquinolinyl disulfide (4g)
mp 108-109 °C (benzene/hexane), lit.,17 mp 109 °C.

6,6'-Bisquinolinyl disulfide (4h)
mp 118-119 °C (EtOH-water), lit.,20 119 °C.

7,7'-Bisquinolinyl disulfide (4i)
mp 141-142 °C (EtOH-water). 1H NMR (CDCl\textsubscript{3}), \textsc{\delta}: 7.28-7.39 (dd, \textit{J} = 8.2 Hz, 4.2 Hz, 2H, H-3 and H-3'), 7.69-7.72 (dd, \textit{J} = 8.4 Hz, 2.0 Hz, 2H, H-6 and H-6'), 7.78-7.80 (d, \textit{J} = 8.4 Hz, 2H, H-5 and H-5'), 8.11-8.14 (dd, \textit{J} = 8.2 Hz, 1.8 Hz, 2H, H-4 and H-4'), 8.28-8.29 (d, \textit{J} = 2.0 Hz, 2H, H-8 and H-8'). Anal. Calcd for C\textsubscript{18}H\textsubscript{12}N\textsubscript{2}S\textsubscript{2} (320.42): C 67.47; H 3.77; N 8.74; S 20.01. Found C 67.30; H 3.69; N 8.61; S 19.77.

4,4'-Bisisoquinolinyl disulfide (4k)
mP 135-136 °C (EtOH-water). 1H NMR (CDCl\textsubscript{3}), \textsc{\delta}: 7.62-7.71 (m, 4H, H-6, H-6', H-7 and H-7'), 7.98-8.01 (dd, \textit{J} = 8.2 Hz, 1.2 Hz, 2H, H-5 and H-5'), 8.15-8.17 (dd, \textit{J} = 8.4 Hz, 1.0 Hz, 2H, H-8 and H-8'), 8.44 (s 2H, H-3 and H-3'), 9.20 (s, 2H, H-1 and H-1'). Bruice and co-workers43 reported mp and 1H NMR spectrum of hydrochloride of 3-pyridinesulfochloride instead of the respective data of parent compound (5b).

4-Pyridinesulfonyl chloride (5c)
Isolated only in the form of methylene chloride or chloroform solutions, unstable at 10 °C, decomposition observed within 1 h. 1H NMR (CDCl\textsubscript{3}), \textsc{\delta}: 7.86-7.88 (dd, \textit{J} = 4.5, 1.6, 0.3 Hz, 2H, H-3 and H-5), 8.99-9.01 (dd, \textit{J} = 4.5, 1.6, 0.3 Hz, 2H, H-2 and H-6). 13C NMR (CDCl\textsubscript{3}), \textsc{\delta}: 119.6 (C3 and C5), 151.6 (C4), 1984 HETEROCYCLES, Vol. 71, No. 9, 2007
152.2 (C2 and C6). Described in the reference.34

2-Quinolinesulfonyl chloride (5d)
Solid at rt, unstable at rt. 1H NMR (CDCl$_3$), δ: 7.79-7.83 (ddd, $J = 8.8$, 7.0, 0.9 Hz, 1H, H-6), 7.92-7.96 (ddd, $J = 8.8$, 7.0, 1.2 Hz, 1H, H-7), 7.99-8.01 (d, $J = 8.4$ Hz, 1H, H-3), 8.14-8.16 (dd, $J = 8.8$, 0.9 Hz, 1H, H-5), 8.32-8.34 (dd, $J = 8.8$, 1.2 Hz, 1 H, H-8), 8.52-8.54 (d, $J = 8.4$ Hz, 1H, H-4). 13C NMR (CDCl$_3$), δ: 117.0 (IIIo), 128.2 (IIIo), 130.1 (C4a), 130.8 (2 x IIIo), 132.5 (IIIo), 140.2 (IIIo), 139.0 (C4), 147.3 (C8a), 158.1 (C2). Described in the reference.5

3-Quinolinesulfonyl chloride (5e)
mp 96-97 °C (hexane), lit.,26 mp 85-87 °C, mentioned as a part of sample collection.4 1H NMR (CDCl$_3$), δ: 7.81-7.85 (ddd, $J = 8.0$, 7.2, 1.4 Hz, 1H, H-6), 8.03-8.06 (ddd, $J = 8.4$, 7.2, 1.6 Hz, 1H, H-7), 8.07-8.10 (dd, $J = 8.0$, 1.6 Hz, 1 H, H-5), 8.34-8.36 (dd, $J = 8.4$, 1.4 Hz, 1H, H-8), 8.94-8.95 (d, $J = 2.0$ Hz, 1H, H-4), 9.44-9.45 (d, $J = 2.0$ Hz, 1H, H-2).

4-Quinolinesulfonyl chloride (5f)
Isolated only in the form of methylene chloride or chloroform solutions, unstable at 10 °C, within 1 h. 1H NMR (CDCl$_3$), δ: 8.00-8.04 (dd, $J = 8.8$, 7.6 Hz, 1H, H-6), 8.08-8.09 (d, J=6.0 Hz, 1H, H-3), 8.14-8.18 (dd, $J = 8.4$, 7.6 Hz, 1H, H-7), 8.47-8.49 (d, $J = 8.4$ Hz, 1H, H-8), 8.91-8.93 (d, $J = 8.8$ Hz, 1H, H-5), 9.15-9.16 (d, $J = 6.0$ Hz, 1H, H-2). 13C NMR (CDCl$_3$), δ: 122.3 (C3), 122.9 (C6), 125.5 (C5), 127.5 (C8a), 131.6 (C7), 136.0 (C8), 139.0 (C4), 143.13 (C8a), 153.5 (C2). Mentioned in the reference 26 as a compound with mp 109-111 °C, which temperature is not possible to be reached without compound decomposition according to our studies.

5-Quinolinesulfonyl chloride (5g)
mp 91-92 °C (hexane), lit.,17 mp 91-95 °C. 1H NMR (CDCl$_3$), δ: 8.16-8.22 (m, 2H, H-3 and H-7), 8.69-8.70 (dd, $J = 7.2$, 1.4 Hz, 1H, H-6), 9.25-9.29 (m, 2H, H-4 and H-8), 9.69-9.71 (dd, J=4.4, 1.2 Hz, 1H, H-2).

6-Quinolinesulfonyl chloride (5h)
mp 89-90 °C (hexane), lit.,20 mp 91 °C. 1H NMR (CDCl$_3$), δ: 7.62-7.66 (dd, $J = 8.3$, 4.2 Hz, 1H, H-3), 8.23-8.26 (dd, $J = 9.0$, 2.2 Hz, 1H, H-7), 8.33-8.35 (d, $J = 9.0$ Hz, 1H, H-8), 8.37-8.39 (dd, J=8.3, 1.6 Hz, 1H, H-4), 8.61-8.62 (d, $J = 2.2$ Hz, 1H, H-5), 9.14-9.15 (dd, $J = 4.2$, 1.6 Hz, 1H, H-2).

7-Quinolinesulfonyl chloride (5i)
mp 115-116 °C (hexane). 1H NMR (CDCl$_3$), δ: 7.68-7.71 (dd, $J = 8.4$, 4.4 Hz, 1H, H-3), 8.10-8.16 (m, 2H, H-5 and H-6), 8.35-8.37 (dd, $J = 8.4$, 1.6 Hz, 1H, H-4), 8.92-8.93 (d, $J = 1.6$ Hz, 1H, H-8), 9.14-9.15 (dd, $J = 4.4$, 1.6 Hz, 1H, H-2). Anal. Calcd for C$_9$H$_6$ClNO$_2$S (227.66): C 47.48; H 2.66; N 6.15; S 14.08. Found C 47.28; H 2.46; N 6.01; S 13.78.
8-Quinolinesulfonyl chloride (5j)
mp 130-131 °C (hexane), lit., Nin H NMR (CDCl$_3$), δ: 7.63-7.66 (dd, $J = 7.6$, 4.4 Hz, 1H, H-3), 7.68-7.72 (dd, $J = 8.4$, 8.0 Hz, 1H, H-6) 8.22-8.24 (dd, $J = 8.0$, 1.6 Hz, 1H, H-5), 8.31-8.33 (dd, $J = 8.4$, 1.6 Hz, 1H, H-7), 8.53-8.56 (dd, $J = 7.6$, 1.6 Hz, 1H, H-4), 9.23-9.25 (dd, $J = 4.4$, 1.6 Hz, 1H, H-2).

4-Isoquinolinesulfonyl chloride (5k)
mp 112-113 °C (hexane). 1H NMR (CDCl$_3$), δ: (ddd, $J = 8.0$, 7.2, 1.4 Hz, 1H, H-6), 7.98-8.03 (ddd, $J = 8.4$, 7.2, 1.6 Hz, 1H, H-7), 8.30-8.32 (dd, $J = 8.0$, 1.6 Hz, 1H, H-5), 8.75-8.77 (dd, $J = 8.4$, 1.4 Hz, 1H, H-8), 9.25 (s, 1H, H-3) , 9.69 (s, 1H, H-1).

Anal. Calcd for C$_9$H$_6$ClNO$_2$S (227.66): C 47.48; H 2.66; N 6.15; S 14.08. Found C 47.23; H 2.60; N 5.95; S 13.81.

2-Pyridinesulfonamide (6a)
mp 140-141 °C (EtOH-water), lit.,34 mp 133 °C. 1H NMR (DMSO-d$_6$), δ: 7.46 (s, 2H, NH$_2$), 7.62-7.65 (dd, $J = 7.6$, 4.8, 1.6 Hz, 1H, H-5), 7.92-7.95 (dd, $J = 8.0$, 1.6 Hz, 1H, H-3), 8.05-8.09 (ddd, $J = 8.0$, 7.6, 1.6 Hz, 1H, H-4), 8.71-8.72 (dd, $J = 4.8$, 1.6 Hz, 1H, H-6).

3-Pyridinesulfonamide (6b)
mp 109-110 °C (hexane-acetone), lit.,41 mp 110-111 °C. 1H NMR (DMSO-d$_6$), δ: 7.61 (s, 2H, NH$_2$), 7.62-7.65 (dd, $J = 8.0$, 4.8 Hz, 1H, H-5), 8.18-8.20 (dd, $J = 8.0$, 1.6 Hz, 1H, H-4), 8.78-8.80 (dd, $J = 4.8$, 1.6 Hz, 1H, H-6), 8.98-8.99 (d, $J = 1.6$ Hz, 1H, H-2).

4-Pyridinesulfonamide (6c)
mp 168-169 °C (water), lit.,34 mp 168-169 °C. 1H NMR (DMSO-d$_6$), δ: 7.70 (s, 2H, NH$_2$), 7.74-7.75 (ddd, $J = 4.4$, 1.6 Hz, 2H, H-3 and H-5), 8.82-8.84 (dd, $J = 4.4$, 1.6 Hz, 2H, H-2 and H-6).

2-Quinolinesulfonamide (6d)
mp 164-165 °C (EtOH-water). 1H NMR (DMSO-d$_6$), δ: 7.64 (s, 2 H, NH$_2$), 7.76-7.80 (ddd, $J = 8.2$, 7.0, 1.2 Hz, 1H, H-6), 7.90-7.94 (ddd, $J = 8.4$, 7.0, 1.4 Hz, 1H, H-7), 8.02-8.04 (d, $J = 8.8$ Hz, 1H, H-3), 8.12-8.14 (m, 2H, H-5 and H-8), 8.66-8.68 (d, $J = 8.8$ Hz, 1H, H-4). Anal. Calcd for C$_9$H$_8$N$_2$O$_2$S (208.33): C 51.91; H 3.87; N 13.45; S 15.27.

3-Quinolinesulfonamide (6e)
mp 204-205 °C (EtOH-water). 1H NMR (DMSO-d$_6$), δ: 7.67 (s, 2H, NH$_2$), 7.72-7.76 (ddd, $J = 8.0$, 7.0, 1.2 Hz, 1H, H-6), 7.90-7.94 (ddd, $J = 8.4$, 7.0, 1.4 Hz, 1H, H-7), 8.11-8.13 (dd, $J = 8.0$, 1.4 Hz, 1H, H-5), 8.20-8.22 (dd, $J = 8.4$, 1.2 Hz, 1H, H-8), 8.83-8.84 (d, $J = 2.4$ Hz, 1H, H-4), 9.22-9.23 (d, $J = 2.4$ Hz, 1H, H-2). Anal. Calcd for C$_9$H$_8$N$_2$O$_2$S (208.33): C 51.91; H 3.87; N 13.45; S 15.20. Found C 51.86; H 3.86; N 13.29; S 15.2.

4-Quinolinesulfonamide (6f)
mp 184-185 °C (EtOH-water). 1H NMR (DMSO-d$_6$), δ: 7.77-7.81 (ddd, $J = 8.0$, 7.0, 1.2 Hz, 1H, H-6),
7.88-7.92 (ddd, J = 8.4, 7.0, 1.2 Hz, 1H, H-7), 7.96-7.97 (d, J = 4.4 Hz, 1H, H-3), 8.00 (s, 2H, NH2), 8.17-8.19 (dd, J = 8.0, 1.2 Hz, 1H, H-5), 8.61-8.63 (dd, J = 8.4, 1.2 Hz, 1H, H-8), 9.11-9.12 (d, J = 4.8 Hz, 1H, H-2). Anal. Calcd. for C9H8N2O2S (208.33): C 51.91; H 3.87; N 13.45; S 15.40. Found C 51.90; H 3.86; N 13.09; S 15.23.

5-Quinolinesulfonamide (6g)
mp 177-178 °C (EtOH-water). 1H NMR (DMSO-d6), δ: 7.71-7.75 (dd, J = 8.4, 4.4 Hz, 1H, H-3), 7.79 (s, 2H, NH2), 7.88-7.92 (dd, J = 8.4, 7.2 Hz, 1H, H-7), 8.19-8.22 (dd, J = 8.2, 1.2 Hz, 1H, H-6), 8.26-8.28 (dd, J = 8.4, 1.2 Hz, 1H, H-8), 9.01-9.03 (dd, J = 8.4, 1.2 Hz, 1H, H-5), 9.04-9.05 (dd, J = 4.4, 1.2 Hz, 1H, H-2). Anal. Calcd. for C9H8N2O2S (208.33): C 51.91; H 3.87; N 13.45; S 15.40. Found C 51.79; H 3.83; N 13.29; S 15.27.

6-Quinolinesulfonamide (6h)
mp 191-192 °C (EtOH-water), lit.,20 mp 192 °C. 1H NMR (DMSO-d6), δ: 7.56 (s, 2H, NH2), 7.65-7.69 (dt, J = 8.4, 4.4 Hz, 1H, H-3), 8.01-8.14 (dd, J = 8.8, 2.0 Hz, 1H, H-7), 8.19-8.20 (d, J = 8.8 Hz, 1H, H-8), 8.48-8.49 (dd, J = 2.0 Hz, 1H, H-5), 8.59-8.60 (dd, J = 8.4, 1.6 Hz, 1H, H-4), 9.02-9.04 (dd, J = 4.4, 1.6 Hz, 1H, H-2).

7-Quinolinesulfonamide (6i)
mp 192-193 °C (EtOH-water). 1H NMR (DMSO-d6), δ: 7.60 (s, 2H, NH2), 7.68-7.71 (dd, J = 8.4, 4.0 Hz, 1H, H-3), 7.96-7.99 (dd, J = 8.6, 1.8 Hz, 1H, H-6), 8.19-8.21 (d, J = 8.6 Hz, 1H, H-5), 8.44-8.45 (dd, J = 1.8 Hz, 1H, H-8), 8.48-8.50 (dd, J = 8.4, 1.6 Hz, 1H, H-4), 9.04-9.05 (dd, J = 4.0, 1.6 Hz, 1H, H-2). Anal. Calcd. for C9H8N2O2S (208.23): calcd. C 51.91; H 3.87; N 13.45; S 15.40. Found C 51.90; H 3.86; N 13.18; S 15.18.

8-Quinolinesulfonamide (6j)
mp 183-184 °C (EtOH-water), lit.,42 mp 179 °C. 1H NMR (DMSO-d6), δ: 7.36 (s, 2H, NH2), 7.69-7.77 (m, 2H, H-3 and H-6), 8.25-8.28 (dd, J = 8.4, 1.4 Hz, 1H, H-5), 8.29-8.30 (dd, J = 7.2, 1.4 Hz, 1H, H-7), 8.53-8.55 (dd, J = 8.4, 1.6 Hz, 1H, H-4), 9.06-9.08 (dd, J = 4.4, 1.6 Hz, 1H, H-2).

4-Isoquinolinesulfonamide (6k)
mp 248-249 °C (EtOH-water). 1H NMR (DMSO-d6), 7.84-7.87 (m, 3H, H-6 and NH2), 7.98-8.03 (dd, J = 8.4, 7.2, 1.6 Hz, 1H, H-7), 8.31-8.33 (dd, J = 8.4, 1.6 Hz, 1H, H-5), 8.59-8.61 (dd, J = 8.4, 1.4 Hz, 1H, H-8), 8.98 (s, 1H, H-3), 9.55 (s, 1H, 1-H). Anal. Calcd for C9H8N2O2S (208.23): C 51.91; H 3.87; N 13.45; S 15.40. Found C 51.66; H 3.93; N 13.36; S 15.21.

ACKNOWLEDGMENTS
This paper is dedicated to Professor Marian Mikołajczyk from the Centre of Molecular and Macromolecular Studies of the Polish Academy of Sciences, Łódź, Poland, for His encouragement to study organic chemistry of sulfur.
REFERENCES

Part IC in the series of Azinyl Sulfides

