DEVELOPMENT OF A GLYCOSYLATION REACTION: A KEY TO ACCESSING STRUCTURALLY UNIQUE NUCLEOSIDES

Yuichi Yoshimura*

Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan. E-mail: yoshimura@tohoku-mpu.ac.jp

Abstract – Nucleosides are potential drug candidates for antitumor and antiviral chemotherapies. Thus, the synthesis of structurally diverse nucleosides would contribute to the search for new antitumor and antiviral agents. The use of the glycosylation reaction to synthesize nucleoside derivatives would be a practical way to prepare nucleosides with unnatural sugar moieties. Therefore, we synthesized many nucleoside derivatives by using new glycosylation reactions categorized into three types: 1) a Pummerer-type glycosylation reaction used for constructing 4’-thionucleoside skeletons, 2) a sulfur-assisted Mitsunobu reaction used for isonucleoside syntheses, and 3) an oxidative coupling reaction catalyzed by hypervalent iodine for carbocyclic nucleosides and in the syntheses of dihydropyranonucleosides. In this review, we describe the development of the glycosylation reactions and their application to the synthesis of various structurally unique nucleoside derivatives.

CONTENTS
1. Introduction
2. Development of a Pummerer-type glycosylation reaction toward the synthesis of 4’-thionucleosides
3. Development of a sulfur-assisted Mitsunobu reaction toward the synthesis of isonucleosides
4. Development of an oxidative coupling reaction catalyzed by hypervalent iodine toward the synthesis of carbocyclic nucleosides
5. Application of hypervalent iodine chemistry to the synthesis of dihydropyranonucleosides
6. Conclusion
1. INTRODUCTION

Nucleoside derivatives constitute an important class of compounds because they show antitumor and antiviral activities.¹ To date, many nucleoside antimetabolites have been used as clinical drugs in chemotherapies against cancer and viruses. Idoxuridine, which is a 5-iodo-2’-deoxy derivative of uridine, was the first antiviral agent approved for herpes treatment.² Aciclovir, which is the most popular antiherpes drug developed by Welcome, is a 2’,3’-nor derivative of guanosine.³ The first anti-HIV (Human Immunodeficiency Virus) drug approved for the treatment of AIDS (Acquired Immune Deficiency Syndrome), 3’-azido-3’-deoxythymidine (Zidovudine, AZT), still plays a significant role in AIDS treatment.⁴ Gemcitabine, 2’-deoxy-2’-difluorocytidine, developed by Eli Lilly, is an anticancer drug approved for the treatment of pancreatic cancer and now is being used in chemotherapies against various tumors, including lung cancer.⁵ Sofosbuvir, developed by Pharmasset (Gilead), has had recent success in the treatment of hepatitis C (Figure 1).⁶ These drugs show the importance of studying the synthesis of nucleoside derivatives.

![Figure 1. Structures of nucleoside derivatives approved as drugs](image)

Thus, it is necessary to synthesize nucleoside derivatives with structural diversity for discovering new antitumor and antiviral agents. In general, there are three methods used for synthesizing nucleoside derivatives: 1) synthesis starting from a natural nucleoside,⁷ 2) constructing a base moiety on an appropriate sugar portion,⁸ and 3) connecting base and sugar moieties by using glycosylation reactions.⁹ In particular, the third method using a glycosylation reaction is advantageous because various nucleoside
derivatives having different base moieties can be synthesized from one sugar intermediate. To date, we have synthesized many nucleoside derivatives by developing new glycosylation reactions. In this paper, we describe three different glycosylation reactions developed by us: 1) a Pummerer-type glycosylation reaction used for constructing 4'-thionucleoside skeletons, 2) a sulfur-assisted Mitsunobu reaction used for isonucleoside synthesis, and 3) a hypervalent iodine-catalyzed reaction for connecting bases and pseudosugars of carbocyclic nucleosides. In addition, we review the synthesis of nucleoside derivatives with potential biological activities and new structures.

2. DEVELOPMENT OF A PUMMERER-TYPE GLYCOSYLATION REACTION TOWARD THE SYNTHESIS OF 4'-THIONUCLEOSIDES

When we started a new project to explore antitumor and antiviral nucleosides, Walker10 and Secrist11 independently reported that 2'-deoxy-4'-thionucleosides, in which the ring oxygen of the 2-deoxyribose moiety of 2'-deoxynucleosides was replaced with sulfur, had potent anti-herpesvirus activity and that some of the derivatives had cytotoxicity. Together with their reports, 2'-substituted cytidine derivatives, such as DMDC (2)12 and gemcitabine,5 are known to have potent antitumor activity. From these results, we designed 2'-substituted 4'-thiocytidines, 4'-thioDMDC (3) and 4'-thiogemcitabine (4), as potential antitumor agents (Figure 2). In the synthesis of the target nucleoside derivatives, there were several problems. At the time we started the project, the only 4'-thionucleosides reported were 4'-thioribonucleosides,13 4'-thioarabinonucleosides14 and 2'-deoxy-4'-thionucleosides.10,11 Therefore, we needed to develop a strategy to synthesize 4'-thionucleosides which was also applicable to the synthesis of 2'-substituted derivatives. From structure-activity relationship (SAR) studies, we thought that a synthetic strategy employing a glycosylation reaction with 4-thiosugars was ideal, as mentioned above, since we had obtained various base-modified analogues from one 4-thiosugar intermediate. Thus, the first problem to overcome was the need for a new synthetic route to prepare 4-thiosugars, which can be used to synthesize 2-substituted derivatives.

![Figure 2. Desired cytotoxic 2’-substituted 4’-thionucleosides](image-url)
To construct a glycosidic linkage between the base and sugar moiety of nucleoside skeleton 8, a Vorbrüggen reaction15 is generally used. As shown by past results,16 the reaction could be used in the synthesis of 4'-thionucleosides as well as normal “4’-oxy” nucleosides. In addition, we could use original chemistry for sulfur-containing compounds: 1-acetoxy-4-thiosugar 6, a good substrate for the Vorbrüggen reaction, was easily obtained from the corresponding sulfoxide 5 by using a classical Pummerer rearrangement. Although the scheme mentioned above seemed promising, we introduced an additional synthetic idea. The reaction intermediate of the Vorbrüggen reaction15 is sulfenium ion 7 which can also be obtained by using a sila-Pummerer reaction, developed by Kita,17 involving sulfoxide 5. This new glycosylation reaction is attractive since it skips a step and directly accesses sulfenium ion 7 from sulfoxide 5 (Scheme 1). Thus, our second task for synthesizing 4'-thionucleosides was to develop a Pummerer-type glycosylation reaction.

\textbf{Scheme 1.} Concept for the Pummerer-type glycosylation reaction

First, we developed a synthetic route involving bicyclic intermediate 11 starting from xylose derivative 9,18 as shown in Scheme 2. Formation of 11 was performed by consecutive inter-/intramolecular \(S_N2 \) reactions of the dimesylate compound obtained from 3-benzylxylose 10. After acetal hydrolysis of 11, followed by hydride reduction, 4-thioarabinose derivative 12 was obtained. Through cyclic intermediate 9, the chiralities of the 2, 3, and 4 positions of the xylose were transferred to the 4, 3, and 2 positions of 4-thioarabinose derivative 12, respectively. Compound 13, which was protected at the primary hydroxyl group, was converted to a ketone, and the resulting ketone was subjected to a Wittig reaction to give 3-benzyl-2-methylene derivative 14. Deprotection of the benzyl group of 14 gave 2-methylene derivative 15.
Next, we tried the Pummerer-type glycosylation of \(\text{N}^4\)-acetylcytosine with sulfoxide 16, obtained by treatment of 15 with \(m\)CPBA. We found that simple treatment of 15 with excess persilylated \(\text{N}^4\)-acetylcytosine in the presence of TMSOTf afforded an anomeric mixture of 4’-thioDMDC derivatives 19 via the formation of sulfenium ion 18 in good yield. Although the ratio of \(\alpha \)- and \(\beta \)-anomers was unsatisfactory, the Pummerer-type glycosylation was effective for the formation of the glycoside bond of 4’-thionucleosides. Deprotection of 19 and separation of the anomers afforded 4’-thioDMDC (\(\beta \)-3) and its anomer \(\alpha \)-3 (Scheme 2).¹⁹

Scheme 2. Synthesis of 4’-thioDMDC

From the common intermediate 20, described above, we synthesized 4’-thiogemicitabine. The ketone 20 was treated with DAST to give geminal difluoro derivative 21, which was oxidized to the corresponding sulfoxide to give 23 after conversion of the protecting group. The sulfoxide 23 was subjected to Pummerer-type glycosylation conditions, as in the case of 16, to give desired 4’-thiogemicitabine derivatives 24 in moderate yield. It is known that 2-fluorosugar derivatives are resistant to hydrolysis and glycosylation due to destabilization of the cationic intermediate by a strong electron-withdrawing fluoro substituent close to the reaction site.²⁰ Thus, the Pummerer-type glycosylation with 23 having difluoro substituents at the 2-position is a suitable method for obtaining the desired nucleoside derivative since the reaction could avoid C-O bond scission at the anomeric center. Deprotection and the subsequent separation of anomers gave \(\alpha \)- and \(\beta \)-anomers of 4’-thiogemicitabine¹⁹ (\(\alpha \)- and \(\beta \)-4, Scheme 3). Among
the synthesized analogues, \(\beta\)-4'-thioDMDC (\(\beta\)-3) exhibited potent antitumor activity in comparison to 4'-thiogemcitabine (\(\beta\)-4), which showed only moderate activity.\(^{19,21}\) On the other hand, the most active 4'-thionucleoside we synthesized was the mono-fluorinated derivative 4'-thioFAC.\(^{19,22}\) 4'-ThioFAC showed potent antitumor activity against various tumor cell lines and was active in in vivo assays using nude mouse model-implanted human tumor.\(^{23}\) Furthermore, we found that a series of 4'-thioFAC analogues had potent antiherpes virus activity.\(^{24}\)

Scheme 3. Synthesis of 4'-thiogemcitabine

After the synthesis of 4'-thioDMDC and 4'-thiogemcitabine using the Pummerer-type glycosylation reaction was reported by us, many other groups reported various 4'-thionucleoside derivatives. Matsuda and co-workers applied the reaction to the syntheses of 4'-thioribonucleosides.\(^{25}\) Diol 26 was synthesized from tri-\(O\)-benzylated ribose 25, of which the primary hydroxyl group was protected by the TBS group, and then subjected to the Mitsunobu reaction to give \(p\)-nitrobenzoate 27. After deprotection of the \(p\)-nitrobenzoate moiety, epimerized diol 28 was converted to a 4-thioribose derivative, as in the case of 4'-thioDMDC shown above, to give 4-thioribose derivative 29. Deprotection of 29 and protection of the 3- and 5-hydroxyl groups by using 1,1,3,3-tetraisopropyl-1,3-dichlorodisiloxane-1,3-diyl (TIPDS), followed by acylation at the 2-position with dimethoxybenzoyl group (DMBz), gave 2-dimethoxybenzoate 31. Introduction of DMBz at the 2-position and diastereselective formation of sulfoxide 32, favored in Pummerer-type glycosylation reactions, were key tactics in Matsuda’s synthesis. Under optimized conditions for 32, the desired 4'-thiouridine derivative was obtained as the sole product in excellent yield (Scheme 4).\(^{25}\)
We synthesized 4’-thioribonucleosides by using a different synthetic method. The skeleton of the 4-thiouridine was constructed via a ring-contraction reaction under reductive conditions. 2-Mesylate 36, obtained from 35, was used without any purification due to its instability. The reaction mixture containing 36 was treated with NaBH₄ in aqueous EtOH to give the ring contracted product 40 in good yield. As shown in Scheme 5, the reaction proceeded via the following three steps: 1) intramolecular nucleophilic
attack of sulfur at the 5-position and the formation of episulfonium ion 37, 2) ring contraction and
generation of 5-aldehyde 39, and 3) hydride reduction of 39. 5-O-Silylated sulfoxide 41, prepared from
40, was subjected to the Pummerer-type glycosylation reaction by treatment with persilylated uracil 42
and excess diisopropylethylamine (DIPEA) in the presence of TMSOTf to give 4'-thiouridine derivative
43 stereoselectively (Scheme 5).26

Chu27 and Matsuda28 independently studied the synthesis of 3'-thio analogues of oxetanocin A29 which is
a nucleoside antibiotic having oxetanose as a sugar portion, using the Pummerer-type glycosylation as a
key step. Chu and his co-workers synthesized thietanose derivative 47 from ribose derivative 44 via a
strategy similar to that for 4'-thioDMDC. Thietanose derivative 47 was oxidized, and the resulting ketone
was treated with the Petasis reagent30 to give exo-methylene 48. Hydroboration of 48, followed by
oxidation with mCPBA, gave thietanose sulfoxide 50, which was subjected to Pummerer-type
glycosylation under modified conditions (silylated 6-chloropurine, TMSOTf, Et3N, ZnI2) to give a 4:5
mixture of α- and β-anomers of 51. Stepwise amination at the 6-position of 51 and desilylation by
treatment with TBAF yielded 3'-thiooxetanocin A (52) (Scheme 6).27

On the basis of the reports of Chu and Matsuda, Pummerer-type glycosylation is effective for preparing
thietanose, a 4-membered cyclic thiosugar. We focused on the scope and limitations of the reaction and
decided to apply it to a 6-membered ring system with dihydrothiopyranose as a substrate.31 We designed a ring-expanded analogue of L-4'-thioD4C,32 which has been reported to possess anti-HIV activity. Since the L-isomer of Lamivudine has more potent anti-HIV activity with lesser cytotoxicity,33 it has been thought that both the D- and L-isomers of nucleosides should be active against HIV.34 Therefore, we tried to synthesize the target analogue as a racemate. Monosilylated 2-butene-1,4-diol 5335 was converted to the corresponding epoxide, which was treated with vinyl Grignard reagent in the presence of copper iodide to give diol 54. Selective introduction of a 2,4,6-trisopropylbenzenesulfonyl (TPS) group at the primary alcohol of 54 and nucleophilic substitution by allyl mercaptan gave diene 55. The ring-closing metathesis (RCM) reaction of 55 using the second generation Grubbs catalyst36 gave dihydrothiopyran derivative 56 in excellent yield. After one-carbon deletion, protection at the resulting primary hydroxyl group of 58 and oxidation gave sulfoxide 60. Sulfoxide 60 was subjected to the Pummerer-type glycosylation reaction. Treatment of sulfoxide 60 with bis-\textit{O}\textsubscript{2,4}-((trimethylsilyl)uracil (42), TMSOTf, and DIPEA gave dihydrothiopyranyluracil derivatives \(\beta\)-61 and \(\alpha\)-61 in 41\% and 29\% yields, respectively. Finally, conversion of the uracil moiety of \(\beta\)-61 to cytosine and desilylation afforded dihydrothiopyranyl cytosine 63 (Scheme 7).31

![Scheme 7. Synthesis of dihydrothiopyranyl cytosine derivative](image)

However, 63 did not show anti-HIV activity. Thus, we prepared an analogue with an extra hydroxymethyl unit at the 4’-position of 63, which resembles the structure of oxetanocin.37 Epoxide 65 was prepared...
from 2-butyne-1,4-diol (64) in 3 steps and was treated with vinyl Grignard reagent, as described above, followed by mesylation, to give mesylate 66. Introduction of an allyl sulfide unit in 66 gave diene 67, followed by RCM with the second generation Grubbs catalyst,36 afforded dihydrothiopyran 68. After transformation of the protecting group from MOM38 to TBS and oxidation, Pummerer-type glycosylation of the resulting sulfoxide 70 gave a mixture of \(\beta \)-71 and \(\alpha \)-71 in 63\% yield (\(\alpha : \beta = 1:1 \)). Using the same procedure as that for 63, bis(hydroxymethyl)dihydrothiopyranyl cytosine derivative 72 was synthesized and was shown to have anti-HIV activity (Scheme 8).37

\begin{center}
\begin{tikzpicture}
\node (1) at (0,0) {1) LiAlH\textsubscript{4} \quad 2) MOMCl \quad 3) \textit{m}CPBA} ;
\node (2) at (1,0) {OMOM} ;
\node (3) at (2,0) {65} ;
\node (4) at (3,0) {1) H\textsubscript{2}C=CHMgCl \quad CuI \quad 2) MsCl} ;
\node (5) at (4,0) {OMOM} ;
\node (6) at (5,0) {66} ;
\node (7) at (6,0) {1) KSAc \quad 2) allyl bromide} ;
\node (8) at (7,0) {MOMOM} ;
\node (9) at (8,0) {67} ;
\node (10) at (9,0) {2nd Grubbs} ;
\node (11) at (10,0) {MOMOM} ;
\node (12) at (11,0) {68} ;
\node (13) at (12,0) {1) TMSOTf \quad 2,2'-bipyridyl \quad then \textit{H}\textsubscript{2}O \quad 2) TBSOTf} ;
\node (14) at (13,0) {TBSO} ;
\node (15) at (14,0) {69} ;
\node (16) at (15,0) {NaIO\textsubscript{4}} ;
\node (17) at (16,0) {O} ;
\node (18) at (17,0) {70} ;
\node (19) at (18,0) {Bis(TMS)uracil (42) \quad TMSOTf \quad iPr\textsubscript{2}NEt \quad 63\% (\alpha:\beta = 1:1)} ;
\node (20) at (20,0) {72} ;
\node (21) at (21,0) {1) TPSCI \quad DMAP \quad then, \textit{NH}_4\textit{OH} \quad 2) TBAF} ;
\node (22) at (22,0) {71} ;
\node (23) at (23,0) {1634} ;
\node (24) at (24,0) {HETEROCYCLES, Vol. 94, No. 9, 2017} ;
\node (25) at (25,0) {HETEROCYCLES, Vol. 94, No. 9, 2017} ;
\node (26) at (26,0) {1634} ;
\end{tikzpicture}
\end{center}

Scheme 8. Synthesis of bis(hydroxymethyl)dihydrothiopyranyl cytosine derivative

3. DEVELOPMENT OF A SULFUR-ASSISTED MITSUNOBU REACTION TOWARD THE SYNTHESIS OF ISONUCLEOSIDES

During the synthesis of 4'-thioFAC, we confirmed that the reaction of 13 by using DAST gave a fluorinated compound with retention at the reaction site.22 Marquez reported similar results, suggesting that the reaction proceeded via the neighboring group participation of the ring sulfur to form an episulfonium ion as an intermediate.39 Thus, we synthesized iso-4'-thio-ddA 7540 as a potential anti-HIV agent since iso-ddA 7441 was known to have anti-HIV activity comparable to that of ddA, a parental compound of the anti-HIV drug didanosine (73).42
After optimizing the reaction conditions, we found that the Mitsunobu reaction with 6-chloropurine in acetonitrile selectively gave the β-isomer of 77, although the reaction yield was low. Deprotection and amination at the 6-position of 77 gave desired 75 (Scheme 9).

Although 75 did not show anti-HIV activity, the results prompted us to study 4'-substituted isonucleosides. With iso-ddA as an example, isonucleosides are a unique category of nucleoside derivatives and have superior tolerance against acid and enzymatic hydrolysis. On the other hand, since 4'-ethynyl nucleosides, such as 78, show potent anti-HIV-1 activity, the corresponding D4T derivative 79, which exhibited anti-HIV activity, was synthesized. From these results, 4'-substituted isonucleosides are attractive target molecules for anti-HIV agents. At that time, only the report on the synthesis of 4'-substituted isonucleosides by Nair was available. The development of a new method to access 4'-substituted isonucleosides was necessary to study the SAR of these analogues. Therefore, we developed a strategy for the synthesis of 4'-hydroxymethylisonucleosides, such as 80, which could serve as an intermediate for the synthesis of a variety of 4'-substituted isonucleosides (Figure 4).

We synthesized 85 from intermediate 84 by desulfurization. From the synthesis of iso-4'-thionucleosides described above, the reaction occurred via a Mitsunobu reaction using a nucleobase accompanied by sulfide migration. On the other hand, by using the sulfide attachment at the 3'-position of 84, the formation of a thietane ring around the 3'- and 4'-positions would afford bicyclo-isonucleoside 81, an analogue structurally resembling Lamivudine (Scheme 10).
Figure 4. Structures of 4'-substituted nucleosides

Scheme 10. Strategy for the synthesis of 4'-substituted isonucleosides

The reaction of the dianion of propargyl alcohol and 86 gave diol 87. Semi-hydrogenation of 87 in the presence of a Lindlar catalyst gave (Z)-allyl alcohol derivative 88. Silylation of the primary alcohol of 88, followed by treatment with mCPBA and desilylation, gave epoxide 89. Intramolecular etherification of 89 was carried out under Mitsunobu reaction conditions to give the desired dioxabicyclohexane derivative 90. Cleavage of the epoxide ring of 90 was achieved by treatment with sodium thiophenoxide to give thiophenyl derivative 91 as the sole product. As we expected, the Mitsunobu reaction of 91 with 6-chloropurine in the presence of DEAD and triphenylphosphine proceeded in a regiospecific manner and stereoselectively gave purine isonucleoside derivative 92 in 83% yield. After amination at the 6-position of 92, desulfurization by radical reduction gave 94, which was deprotected by acid treatment to give the desired 4’-hydroxymethyl-iso-ddA 80 (Scheme 11).46,47
Using a similar procedure as that described above, the oxirane ring of \(90\) was cleaved by treatment with the sodium salt of PMB mercaptan to give PMB sulfide \(95\) as the sole product. Compound \(95\) was subjected to the sulfur-assisted Mitsunobu reaction in the presence of \(N^3\)-benzoylthymine to give isothymidine derivative \(96\) in 59% yield. After removal of the acetal group, followed by mesylation, the PMB group of dimesylate \(97\) was removed, and the resulting thiol was treated with DBU to give thietane
The desired bicyclo-isothymidine 100 was synthesized by converting the mesylate moiety to a benzoate moiety via an S_N2 reaction of 98, followed by treatment with aqueous NH$_3$ (Scheme 12).^47

4. DEVELOPMENT OF AN OXIDATIVE COUPLING REACTION CATALYZED BY HYPAERVELENT IODINE TOWARD THE SYNTHESIS OF CARBOCYCLIC NUCLEOSIDES

As described above, we developed a Pummerer-type glycosylation reaction, where silylated nucleobases are directly coupled with sulfoxides. Since this glycosylation reaction could be coupled with oxidation, we thought that the reaction was applicable to carbocyclic nucleoside synthesis. In other words, allylsilanes act as a pseudosugar donor for a carbocyclic nucleoside by using a hypervalent iodine reagent.\(^{48}\) In the Pummerer-type glycosylation, thiosugar donor 101 was oxidized to sulfoxide 102, the reaction of which was mediated by a Lewis acid (TMSOTf) and a base to give desired thionucleoside 104 via the formation of sulfenium ion 103. Following the concept of the Pummerer-type glycosylation, the coupling reaction of cyclic allylsilane 105, a pseudosugar donor for carbocyclic nucleosides 107, with a persilylated nucleobase was achieved by using hypervalent iodine in the presence of an appropriate Lewis acid (Scheme 13).

![Scheme 13. Oxidative coupling reaction for the synthesis of carbocyclic nucleosides](image)

First, model reactions of the oxidative coupling reaction were examined using simple cycloalkenylsilanes 108\(_a,b\) and 109\(_a,b\), prepared by hydrosilylation of cyclopentadiene and cyclohexadiene,\(^{49}\) respectively. The coupling reactions of 108\(_a,b\) and 109\(_a,b\) with bis(trimethylsilyl)uracil (42) in the presence of a hypervalent iodine reagent and TMSOTf were examined, and the results are summarized in Scheme 14 and Table 1. The reactions of allylsilane 108\(_a\) and 108\(_b\) with 42 in the presence of (diacetoxyiodo)benzene (PhI(OAc)$_2$) gave cycloalkenyluracil 110\(_a\) and 110\(_b\) in moderate yields (entries 1 and 2, respectively). Treatment of 109\(_a\) and 109\(_b\) under the same conditions gave 110\(_a\) and 110\(_b\) in 65%
yield (entries 3 and 4, respectively). The use of [di(trifluoroacetoxy)iodo]benzene (PhI(O₂CCF₃)₂ (entry 5) and iodosobenzene (PhIO) (entry 6) slightly decreased the reaction yields. On the other hand, the reaction using [hydroxy(tosyloxy)iodo]benzene (PHI(OH)OTs) gave 110b in a poor yield (entry 7).\(^5\)

Scheme 14. Oxidative coupling reaction of cyclic allylsilanes and persilylated uracil

Table 1. Summary of the oxidative coupling reaction of cyclic allylsilanes 108 and 109 and persilylated uracil

<table>
<thead>
<tr>
<th>entry</th>
<th>comp</th>
<th>I(III)</th>
<th>time (h)</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>108a</td>
<td>PhI(OAc)₂</td>
<td>15</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>108b</td>
<td>PhI(OAc)₂</td>
<td>15</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>109a</td>
<td>PhI(OAc)₂</td>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>109b</td>
<td>PhI(OAc)₂</td>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>109b</td>
<td>PhI(O₂CCF₃)₂</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>109b</td>
<td>PhIO</td>
<td>1</td>
<td>57</td>
</tr>
<tr>
<td>7</td>
<td>109b</td>
<td>PhI(OH)OTs</td>
<td>1</td>
<td>29</td>
</tr>
</tbody>
</table>

The developed oxidative coupling reaction was applied to the synthesis of new carbo cyclic nucleoside derivatives 118, designed as potential anti-HIV agents. The Diels-Alder reaction of trimethylsilylbutadiene 111 and dimethyl fumarate (112) gave cyclohexene diester 113 as a 1:1 mixture.\(^5\)

Hydride reduction of 113 and subsequent separation by silica gel column chromatography gave 114a,b, which were protected by the silyl group to give di-O-TBDPS derivatives 115a and 115b. The coupling reaction of 115a and 115b with persilylated uracil 42 was performed by using (diacetoxyiodo)benzene as an oxidant. The results are shown in Table 2. Since the reaction proceeds via an allyl cation, the reaction of 115a gave an inseparable mixture containing 4 stereoisomers of 116a–d in a ratio of 6:10:2:1.5, estimated from the \(^1\)H NMR spectrum of the reaction mixture, and the reaction of 115b gave similar results.\(^5\) Cyclohexadiene 117, obtained in both cases, was consistent with the proposed reaction mechanism shown above and was formed via an E1 elimination of the allyl cation intermediate. The
different reactivities of $115a$ and $115b$ were explained by steric interaction of the substituents on the cyclohexene ring with the approaching nucleobase (Scheme 15 and Table 2).

Scheme 15. Synthesis of carbocyclic nucleosides using oxidative coupling reaction

Table 2. Summary of the oxidative coupling reaction of cyclic cyclohexenylsilanes $115a,b$ and uracil

<table>
<thead>
<tr>
<th>comp</th>
<th>time (h)</th>
<th>yield (%)</th>
<th>ratio</th>
<th>recover.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$116a-d$</td>
<td>117</td>
<td>$116a:116b:116c:116d$</td>
</tr>
<tr>
<td>$115a$</td>
<td>1</td>
<td>60</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>$115b$</td>
<td>24</td>
<td>50</td>
<td>11</td>
<td>20</td>
</tr>
</tbody>
</table>

During the conversion of $116a-d$ to cytosine analogues by the same procedure described above, all the stereoisomers were separated. Among them, cytosine derivative 118 only showed weak anti-HIV activity.50
5. APPLICATION OF HYPERVALENT IODINE CHEMISTRY TO THE SYNTHESIS OF DIHYDROPYRANONUCLEOSIDES

We developed a hypervalent iodine-catalyzed reaction for condensing bases and pseudosugars to form the skeleton of carbocyclic nucleosides. The success of the oxidative coupling reaction led us to develop a glycosylation reaction applicable to another sugar donor, i.e., a glycal. The direct coupling of glycals with nucleobases is challenging since it is formally a C-N bond forming reaction with cleavage of an inactive C-H bond. Similar C-N bond forming reactions have been extensively studied in the field of hypervalent iodine chemistry.\(^{52}\) The hypervalent iodine-catalyzed coupling reaction occurs via two steps: 1) the generation of carbocation \(106\) by the oxidative reaction of allylsilane \(105\) with PhI(OAc)\(_2\) and TMSOTf, followed by 2) the addition of a persilylated base, as shown in Scheme 16. We thought that the reaction of electron-rich glycal \(119\) under the oxidation conditions described above generated oxocarbenium ion \(120\), which would serve as an intermediate to give nucleoside \(121\) (Scheme 16).

![Scheme 16. Oxidative coupling reaction of glycals using hypervalent iodine](image)

First, we performed model reactions of the oxidative coupling of an allylsilane or enol ether using the TMSOTf/PhI(OAc)\(_2\) system. The reaction of allyltrimethylsilane \(122\) gave 1-allyluracil \(125\) in 69\% yield by treatment with 1 equiv of PhI(OAc)\(_2\), TMSOTf, and 42 in dichloromethane (entry 1 in Table 3). Although the same reaction was applied to benzyltrimethylsilane \(123\), the desired product \(126\) did not form (entry 2). Next, we tried the reaction with 3,4-dihydro-2\(H\)-pyran (\(124\)). The conditions for the reaction involving \(124\) needed to be optimized. After several attempts, it was found that dihydopyranyluracil derivative \(127\) was obtained in 31\% yield when \(124\) was treated under the conditions labeled method A (entry 3). Cu(OTf)\(_2\) could also catalyze the reaction, and the reaction of \(124\) with 0.2 equiv of Cu(OTf)\(_2\) at room temperature (method B) gave \(127\) in 24\% yield (entry 4).\(^{53}\)
Table 3. Summary of the oxidative coupling of bis(TMS)uracil 42 with allylsilanes and enol ethers

<table>
<thead>
<tr>
<th>entry</th>
<th>comp product</th>
<th>yield</th>
<th>entry</th>
<th>comp product</th>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>122-124</td>
<td>69%</td>
<td>3</td>
<td>124-127</td>
<td>31% (method A)</td>
</tr>
<tr>
<td>2</td>
<td>123-124</td>
<td>ND</td>
<td>4</td>
<td>124-127</td>
<td>24% (method B)</td>
</tr>
</tbody>
</table>

Method A: PhI(OAc)₂ (1.5 equiv), TMSOTf (0.4 equiv), and 2 (2.0 equiv) from −40 °C to rt.
Method B: PhI(OAc)₂ (1.5 equiv), Cu(OTf)₂ (0.2 equiv), and 2 (2.0 equiv) at rt.

A possible reaction mechanism for the oxidative coupling reaction is shown in Scheme 17. When dihydropyran 124 was reacted with PhI(OAc)₂, acetoxyiodobenzene derivative 128 formed first upon reaction with TMSOTf. There are two plausible reaction paths from intermediate 128 to the N₁-substituted uracil 127: nucleophilic attack of bis(TMS)uracil 42 occurs prior to elimination (path a), and an allylic carbocation 132 formed from 131 reacts with 42 (path b). In the reaction with dihydrofuran, side products generated from intermediate 130 were isolated (data not shown). The results strongly suggest that path a occurs more than path b does (Scheme 17).

It was impossible to optimize the oxidative coupling reaction further. To improve the reaction yield of the oxidative coupling reaction, we examined the use of a co-catalyst. The proposed reaction mechanism described above suggested that the instability of intermediate 128 caused the low yield. Therefore, we used (PhSe)₂ as a co-catalyst, which should prevent the formation of unstable 128, to obtain 121 in one step (Scheme 18).
Scheme 17. A proposed reaction mechanism for the oxidative coupling of 3,4-dihydro-2H-pyran 124 with TMSOTf/PhI(OAc)$_2$

Scheme 18. Synthesis of 1-(3-phenylselanyltetrahydropyran-2-yl)uracil 121 using a co-catalyst

When 124 and 42 were treated with PhI(OAc)$_2$ and (PhSe)$_2$ in the presence of catalytic amounts of TMSOTf, the trans-isomer of 1-(3-phenylselanyltetrahydropyran-2-yl)uracil 138 was selectively obtained, as depicted in entry 1 of Table 4. Although the results were different from those expected, they suggested that the reaction could be used to obtain 2’-deoxynucleosides as well as dideoxydidehydronucleosides. Moreover, by using the conditions mentioned above, we avoided the use of an unstable reagent, like PhSeBr, to obtain 2’-phenylselanyl nucleoside derivatives.

The oxidative coupling reaction of 42 with enol ethers and glycals using the TMSOTf/PhI(OAc)$_2$/(PhSe)$_2$ system were performed, and the results are summarized in Table 4.
Table 4. Summary of the oxidative coupling reaction of bis(TMS)uracil 42 with enol ethers using the TMSOTf/PhI(OAc)$_2$/(PhSe)$_2$ system

<table>
<thead>
<tr>
<th>entry</th>
<th>enol ether</th>
<th>product</th>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>124</td>
<td>138</td>
<td>73%</td>
</tr>
<tr>
<td>2</td>
<td>134</td>
<td>139</td>
<td>31%</td>
</tr>
<tr>
<td>3</td>
<td>135</td>
<td>140</td>
<td>69%</td>
</tr>
<tr>
<td>4</td>
<td>TBSO-136</td>
<td>α-141</td>
<td>80% (α:β = 1:2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β-141</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>137</td>
<td>α-142</td>
<td>64% (α:β = 1:1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β-142</td>
<td></td>
</tr>
</tbody>
</table>

The reaction with 134 afforded 1-(3-phenylselanyltetrahydrofuran-2-yl)uracil 139 in 31% yield (entry 2). The reaction of 135 with 42 at −5 °C afforded 140 in 69% yield (entry 3). The reaction involving 136 gave α-141 and β-141 in 80% yield with the β-nucleoside as the major product (entry 4). On the other hand, the oxidative glycosylation reaction of D-glucal 137 gave a mixture of α-142 and β-142 in 64% yield without stereoselectivity (entry 5). The oxidative coupling reaction of glycal derivatives, like 136 and 137, is a new glycosylation reaction, by which 2'-deoxy- and 2',3'-dideoxydidehydronucleosides can be accessed (Table 4).53

As part of our studies on SAR of nucleoside derivatives constructed on a 6-membered pseudosugar, like dihydrothiophenonucleoside 72 and carbocyclic nucleoside 118, we designed the synthesis of a
dihydropyranonucleoside by using the oxidative coupling reaction described above. PMB-protected epoxide 143 was treated with vinylmagnesium chloride to give homoallyl alcohol derivative 144, the hydroxyl group of which was then allylated to give diene 145. To construct the dihydropyran ring, RCM of 145 catalyzed with the first generation Grubbs catalyst was performed to give dihydropyran derivative 146. Isomerization of the double bond in 146 was achieved by treatment with a Wilkinson catalyst under basic conditions to afford glycal 147 (Scheme 19).

Scheme 19. Synthesis of dihydropyranonucleoside

Oxidative glycosylation of bis(trimethylsilyl)uracil (42) and glycal 147 gave an inseparable mixture of α- and β-anomers of 148 (α:β = 1:2) in 51% yield. Steric repulsion and dipole interactions between two siloxymethyl substituents should favor the formation of the all axial-substituted carbocation intermediate 152b having a structure similar to the carbocation generated from conformationally “super armed glycosyl donor”. As a result, the β-anomer 148β should predominantly form (Scheme 20).

Scheme 20. Possible carbocation intermediates 152a and 152b
Compound 148 was oxidized by treatment with mCPBA to give the corresponding selenoxides. An elimination reaction of the resulting selenoxides without any purification gave 149. Then the PMB group of 149 was deprotected by treatment with DDQ to give a mixture of free nucleosides. After acetylation of the products, an anomeric mixture of diacetates 150 was separated by using simple silica gel column chromatography. The major β-anomer of 150 was converted into a cytosine derivative, followed by deprotection, to give the desired dihydropyranylcytosine derivative 151. Antiviral evaluations of the final compound revealed that 151 did not show any activity against HIV though its 5′-thio counterpart 72 showed anti-HIV activity (Scheme 19).

6. CONCLUSION

We synthesized many structurally unique nucleoside derivatives by using new glycosylation reactions. Our early products were 4′-thioDMDC and 4′-thioisonucleoside, for which we developed the Pummerer-type glycosylation. In the case of isonucleosides, a sulfur-assisted Mitsunobu reaction was developed and applied to construct the glycosidic bond of bicyclic isonucleosides, which have structures similar to that of Lamivudine. The Pummerer-type glycosylation, on the other hand, was efficiently applied to synthesize dihydrothiopyranonucleosides. As can be seen, the Pummerer-type glycosylation included oxidation of a sulfide to the corresponding sulfoxide, followed by a TMSOTf-mediated coupling reaction. Considering the Pummerer-type glycosylation, a new glycosylation reaction for carbocyclic nucleosides using allylsilane derivatives and hypervalent iodine was developed to synthesize cyclohexenylnucleosides. In the glycosylation reaction, hypervalent iodine chemistry was applied to build a glycosyl bond between nucleobases and glycal derivatives. This new method was employed for the synthesis of dihydropyranonucleosides. From our synthetic studies on nucleoside derivatives, we found many biologically interesting nucleosides active against tumors as well as viruses. The results prove the power of glycoside bond forming reactions toward the synthesis of and search for biologically active nucleoside derivatives.

ACKNOWLEDGEMENTS

This work was supported in part by a Grant-in-Aid for Scientific Research from JSPS and by a grant from the Strategic Research Foundation Grant-aided Project for Private Universities from Ministry of Education, Culture, Sport, Science, and Technology, Japan (MEXT).

REFERENCES

Prof. Yuichi Yoshimura obtained his B.S degree in 1985 and his M.S degree in 1987 from Hokkaido University. He then obtained his Ph.D. degree in 1991 from Hokkaido University and joined Yamasa Corporation after one year of work in the Faculty of Pharmaceutical Sciences, Hokkaido University as a Research Associate. In 1999, he moved to the School of Pharmacy, Showa University as a Lecturer and joined Tohoku Pharmaceutical University in 2004. In 2005, he was promoted to Associate Professor at the same university. In 2014, he became a Professor of Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, the name of which changed to Tohoku Medical and Pharmaceutical University in 2016. He was awarded the Sato Memorial Domestic Award by the Pharmaceutical Society of Japan in 2008. His research interests focus on synthetic and medicinal chemistry of nucleosides and nucleotides.