Supporting Information

Of

A FACILE PREPARATION OF IMIDAZO[1,2-a]PYRIDIN-3-AMINE DERIVATIVES VIA A THREE COMPONENT REACTION WITH β-CYCLODEXTRIN–SO₃H AS CATALYST

Jian Wu,* Fang-Zhou Xu,* She-Lei Feng, Wei Xue, and Zhen-Zhen Wang

Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University; Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, P.R. China. E-mail: jianwu2691@126.com

Co-first author for the manuscript

Table of Contents

1. General Information...2
2. Experimental Procedures..2
3. Notes and References..9
4. NMR and HR-MS Spectras of the Products.................................3-71
1. GENERAL INFORMATION
The substituted pyridin-2-amines were obtained from TCI (Shanghai, China), isocyanides aromatic aldehydes were purchased from Accela ChemBio Co., Ltd (Shanghai, China). melting points were uncorrected and determined on a WRX-4 monocular microscope (Shanghai Yice Apparatus & Equipment Co., Ltd, China). The 1H-NMR and 13C-NMR spectra were recorded on a JEOL ECX 500 NMR spectrometer (JEOL Ltd, Japan) at room temperature operating at 500 MHz for 1H-NMR and 125 MHz for 13C-NMR by using CDCl$_3$ or CD$_3$OD as solvents and TMS as an internal standard; infrared spectra were recorded in KBr on a IR Pristige-21 spectrometer (Shimadzu corporation, Japan), absorbencies are reported in cm$^{-1}$; HR-MS were recorded on a Orbitrap LC-MS instrument (Q-Exative, Thermo Scientific™, American). The course of the reactions was monitored by TLC; analytical TLC was performed on silica gel GF 254.

2. EXPERIMENTAL PROCEDURES
2.1. Preparation of sulfonated β-cyclodextrin,1
To a well stirred mixture of β-cyclodextrin (10.0 g, 4.5 mmol) in CH$_2$Cl$_2$ (50 mL), chlorosulfonic acid (2.00 g, 10 mmol) was added slowly at 0 °C during 3 h. The resulting mixture was stirred for another 2 h to remove HCl from the reaction vessel. Then, the mixture was filtered and washed with methanol and dried at room temperature to obtain β-cyclodextrin-SO$_3$H as a white powder.

2.2. General procedure for the preparation of imidazo[1,2-α]pyridin-3-amines
To a mixture of 2-aminopyridines (1 mmol), aromatic aldehydes (1 mmol) and isocyanides in ethanol (or acetonitrile) was added β-cyclodextrin-SO$_3$H (10 mol %). The reaction mixture was then allowed to stir for 1 hour under 80 °C. after complication of this reaction, the resulting mixture was cooled and the β-cyclodextrin-SO$_3$H was removed by filtration, the organic phase was evaporated in vacuum. Afterwards the residue were washed with ethyl acetate and cyclohexane (1 : 3) and dried to give the product.

3. Notes and References
4. NMR and HR-MS Spectra of the Products

Figure 1. 1H NMR (500 MHz) spectrum of compound 4a in CDCl$_3$.
Figure 2. 13C NMR (125 MHz) spectrum of compound 4a in CDCl$_3$.
Figure 3. HRMS spectrum of compound 4a.
Figure 4. 1H NMR (500 MHz) spectrum of compound 4b in CDCl$_3$.
Figure 5: 13C NMR (125 MHz) spectrum of compound 4b in CDCl$_3$.
Figure 6. HRMS spectrum of compound 4b.
Figure 7. 1H NMR (500 MHz) spectrum of compound 4c in CDCl$_3$.
Figure 8. 13C NMR (125 MHz) spectrum of compound 4c in CDCl$_3$.
Figure 9. HRMS spectrum of compound 4c.
Figure 10. 1H NMR (500 MHz) spectrum of compound 4d in CDCl$_3$.
Figure 11. 13C NMR (125 MHz) spectrum of compound 4d in CDCl$_3$.
Figure 12. HRMS spectrum of compound 4d.
Figure 13. 1H NMR (500 MHz) spectrum of compound 4e in CDCl$_3$.
Figure 14. 13C NMR (125 MHz) spectrum of compound 4e in CDCl$_3$.
Figure 15. HRMS spectrum of compound 4e.
Figure 16. 1H NMR (500 MHz) spectrum of compound 4f in CDCl$_3$.
Figure 17. 13C NMR (125 MHz) spectrum of compound 4f in CDCl$_3$.
Figure 18. HRMS spectrum of compound 4f.
Figure 19. 1H NMR (500 MHz) spectrum of compound 4g in CDCl$_3$.
Figure 20. 13C NMR (125 MHz) spectrum of compound 4g in CDCl$_3$.
Figure 21. HRMS spectrum of compound 4g.
Figure 22. 1H NMR (500 MHz) spectrum of compound 4h in CDCl$_3$.
Figure 23. 1H NMR (500 MHz) spectrum of compound 4h in CDCl$_3$.
Figure 24. HRMS spectrum of compound 4h.
Figure 25. 1H NMR (500 MHz) spectrum of compound 4i in CDCl$_3$.
Figure 26. 13C NMR (125 MHz) spectrum of compound 4i in CDCl$_3$.
Figure 27. HRMS spectrum of compound 4i.
Figure 28. 1H NMR (500 MHz) spectrum of compound 4j in CDCl$_3$.
Figure 29. 13C NMR (125 MHz) spectrum of compound 4j in CDCl$_3$.
Figure 30. HRMS spectrum of compound 4j.
Figure 31. 1H NMR (500 MHz) spectrum of compound 4k in CDCl$_3$.
Figure 32. 1H NMR (500 MHz) spectrum of compound 4k in CDCl$_3$.
Figure 33. HRMS spectrum of compound 4k
Figure 34. 1H NMR (500 MHz) spectrum of compound 41 in CDCl$_3$.
Figure 35. 13C NMR 125 MHz spectrum of compound 4l in CDCl$_3$.
Figure 36. HRMS spectrum of compound 4l.
Figure 37. 1H NMR (500 MHz) spectrum of compound 4m in CDCl$_3$.
Figure 38. 13C NMR (125 MHz) spectrum of compound 4m in CDCl$_3$.
Figure 39. HRMS spectrum of compound 4m.
Figure 40. 1H NMR (500 MHz) spectrum of compound 4n in CDCl$_3$.
Figure 41. 13C NMR (125 MHz) spectrum of compound 4n in CDCl$_3$.
Figure 42. HRMS spectrum of compound 4n.
Figure 43. 1H NMR (500 MHz) spectrum of compound 4o in D$_2$COD.
Figure 44. 13C NMR (125 MHz) spectrum of compound 4o in D$_3$COD.
Figure 45. HRMS spectrum of compound 4o.
Figure 46. 1H NMR (500 MHz) spectrum of compound 4p in CDCl$_3$.
Figure 47. $^\text{13}$C NMR (125 MHz) spectrum of compound 4p in CDCl$_3$.
Figure 48. HRMS spectrum of compound 4p.
Figure 49. 1H NMR (500 MHz) spectrum of compound 4q in CDCl$_3$.
Figure 50. 13C NMR (125 MHz) spectrum of compound 4q in CDCl₃.
Figure 51. HRMS spectrum of compound 4q.
Figure 52. 1H NMR (500 MHz) spectrum of compound $4\mathbf{r}$ in CDCl$_3$.
Figure 53. 13C NMR (125 MHz) spectrum of compound 4r in CDCl$_3$.
Figure 54. HRMS spectrum of compound 4r.
Figure 55. 1H NMR (500 MHz) spectrum of compound 4s in CDCl$_3$.
Figure S6. 13C NMR (125 MHz) spectrum of compound 4s in CDCl$_3$.
Figure 57. HRMS spectrum of compound 4s.
Figure 58. 1H NMR (500 MHz) spectrum of compound 4t in CDCl$_3$.
Figure 59. 13C NMR (125 MHz) spectrum of compound 4t in CDCl$_3$.
Figure 60. HRMS spectrum of compound 4t.
Figure 61. 1H NMR (500 MHz) spectrum of compound 4u in CDCl$_3$.
Figure 62. 13C NMR (125 MHz) spectrum of compound 4u in CDCl$_3$.
Figure 63. HRMS spectrum of compound 4u.
Figure 64. 1H NMR (500 MHz) spectrum of compound 4v in CDCl$_3$.
Figure 65. 13C NMR (125 MHz) spectrum of compound 4v in CDCl$_3$.
Figure 66. HRMS spectrum of compound 4v.
Figure 67. 1H NMR (500 MHz) spectrum of compound 4w in CDCl$_3$.
Figure 68. 1H NMR (125 MHz) spectrum of compound 4w in CDCl$_3$.

Figure 68. 1C NMR (125 MHz) spectrum of compound 4w in CDCl$_3$.

70
Figure 69. HRMS spectrum of compound 4w.