SUPPORTING INFORMATION

Total Synthesis of Hyalodendriol C

Ishtiaq Jeelani, a) Katsunori Itaya, b) and Hitoshi Abe b)

a) Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku 930-8555, Japan; and
b) Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
Email: ishtiaqjeelani66@gmail.com

CONTENTS

Figure 1. 1H-NMR spectra of 8 (400 MHz, CDCl$_3$)
Figure 2. 13C-NMR spectra of 8 (400 MHz, CDCl$_3$)
Figure 3. 1H-NMR spectra of 9 (400 MHz, CDCl$_3$)
Figure 4. 13C-NMR spectra of 9 (400 MHz, CDCl$_3$)
Figure 5. 1H-NMR spectra of 10 (400 MHz, CDCl$_3$)
Figure 6. 13C-NMR spectra of 10 (400 MHz, CDCl$_3$)
Figure 7. 1H-NMR spectra of 1 (400 MHz, CDCl$_3$)
Figure 8. 13C-NMR spectra of 1 (400 MHz, DMSO)
Figure 9. HRMS of compound 8
Figure 10. HRMS of compound 9
Figure 11. HRMS of compound 10
Figure 12. HRMS of compound 1
Figure 1. 1H-NMR spectra of 8 (400 MHz, CDCl$_3$)

Figure 2. 13C-NMR spectra of 8 (400 MHz, CDCl$_3$)
Figure 3. 1H-NMR spectra of 9 (400 MHz, CDCl$_3$)

Figure 4. 13C-NMR spectra of 9 (400 MHz, CDCl$_3$)
Figure 5. 1H-NMR spectra of 10 (400 MHz, CDCl$_3$)

Figure 6. 13C-NMR spectra of 10 (400 MHz, CDCl$_3$)
Figure 7. 1H-NMR spectra of 1 (400 MHz, CDCl$_3$)

Figure 8. 13C-NMR spectra of 1 (400 MHz, DMSO)
HRMS (EI) m/z [M⁺]

2020/10/09

File:IJ-90002
Sample: - -
Instrument:AX505W
Inlet: Direct

Date Run: 10-9-2020 (Time Run: 10:40:45)

Ionization mode: EI+

Scan: 48
Base: m/z 603; 1.2%FS TIC: 1090079

R.T.: 1.63
#Ions: 192

Selected Isotopes: \(\text{H}^{0.29}_{0.8} \text{O}^{0.5}_{0.5} \text{Cl}^{0.1}_{0.1} \text{Cl}^{37}_{0.1} \)

Error Limit: 20 mmu
Unsaturation Limits: 0 to 50

<table>
<thead>
<tr>
<th>Measured Mass</th>
<th>% Base</th>
<th>Formula</th>
<th>Calculated Mass</th>
<th>Error</th>
<th>Unsaturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>600.02478</td>
<td>25.1%</td>
<td>(\text{C}{28} \text{H}{42} \text{O}^{1.5} \text{Cl})</td>
<td>600.02007</td>
<td>4.7</td>
<td>17.0</td>
</tr>
</tbody>
</table>

Figure 9. HRMS of compound 8

2020/10/07

File: IJ-96007
Sample: - -
Instrument: AX505W
Inlet: Direct

Date Run: 10-7-2020 (Time Run: 14:38:45)

Ionization mode: EI+

Scan: 25
Base: m/z 614; 2%FS TIC: 456770

R.T.: 0.82
#Ions: 124

Selected Isotopes: \(\text{H}^{0.29}_{0.8} \text{O}^{0.5}_{0.5} \text{Cl}^{0.1}_{0.1} \text{Cl}^{37}_{0.1} \)

Error Limit: 20 mmu
Unsaturation Limits: 0 to 50

<table>
<thead>
<tr>
<th>Measured Mass</th>
<th>% Base</th>
<th>Formula</th>
<th>Calculated Mass</th>
<th>Error</th>
<th>Unsaturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>614.03994</td>
<td>100.0%</td>
<td>(\text{C}{29} \text{H}{24} \text{O}^{1.5} \text{Cl})</td>
<td>614.03572</td>
<td>4.2</td>
<td>17.0</td>
</tr>
</tbody>
</table>

Figure 10. HRMS of compound 9
Figure 11. HRMS of compound 10

<table>
<thead>
<tr>
<th>Measured Mass</th>
<th>% Base</th>
<th>Formula</th>
<th>Calculated Mass</th>
<th>Error</th>
<th>Unsaturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>486.12612</td>
<td>100.0%</td>
<td>C_{28}H_{23}O_{3}Cl</td>
<td>486.12340</td>
<td>2.7</td>
<td>18.0</td>
</tr>
</tbody>
</table>

Figure 12. HRMS of compound 1

<table>
<thead>
<tr>
<th>Measured Mass</th>
<th>% Base</th>
<th>Formula</th>
<th>Calculated Mass</th>
<th>Error</th>
<th>Unsaturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>306.02539</td>
<td>100.0%</td>
<td>C_{15}H_{11}O_{5}Cl</td>
<td>306.02950</td>
<td>-4.1</td>
<td>10.0</td>
</tr>
</tbody>
</table>