Supporting Information

Synthesis and Photophysical Properties of Diethynylated Bibenzofuran and Benzodifuran Derivatives

Takaya Hibino and Rui Umeda*
*Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General</td>
<td>S2</td>
</tr>
<tr>
<td>2. Reaction Procedure</td>
<td>S2</td>
</tr>
<tr>
<td>2-1. Procedure for Synthesis of Diiodo Dibenzofuran Derivative 6</td>
<td>S2</td>
</tr>
<tr>
<td>2-2. General Procedure for Synthesis of 1 (GP1)</td>
<td>S3</td>
</tr>
<tr>
<td>2-4. General Procedure for Synthesis of 2 (GP2)</td>
<td>S4</td>
</tr>
<tr>
<td>3. Computational Study of 1 and 2</td>
<td>S8</td>
</tr>
<tr>
<td>4. References</td>
<td>S9</td>
</tr>
<tr>
<td>5. 1H and 13C NMR Spectra of Compounds 1 and 2</td>
<td>S10</td>
</tr>
</tbody>
</table>
1. General

FT-IR spectra were recorded on a JASCO FT/IR-4100 instrument. 1H-NMR spectra were recorded at 400 MHz and 13C-NMR spectra at 100 MHz on JEOL a JEOL JNM-AL400. Chemical shifts were reported in ppm relative to tetramethylsilane or residual solvent as the internal standard. MS spectral analyses were performed on a Bruker microOTOF II spectrometer. Preparative HPLC separation was undertaken with a JAI LC-908 chromatograph using 600 m X 20 mm JAIGEL-1H and 2H GPC columns with CHCl$_3$ as an eluent.

2. Reaction Procedure

To a solution of 3 (3.07 g, 15.0 mmol) in MeOH (30 mL) was added K$_2$CO$_3$ (4.19 g, 30.3 mmol) at room temperature for 3 h. After filtration of the reaction mixture and the removal of solvent, the residue was diluted with AcOEt and the organic layer was washed with saturated NH$_4$Cl aq. and brine. The organic layer was dried over MgSO$_4$. After removal of the solvent under reduced pressure, the crude 4 (1.97 g) was obtained and used next step without purification.

A solution of the above crude 4 was added to the solution of TMEDA (0.175 g, 1.51 mmol) and CuI (0.143 g, 0.751 mmol) in acetone (30 mL) and the reaction mixture was stirred at room temperature under air. After stirring at room temperature for 20 h, the mixture was concentrated under reduced pressure and extracted with CHCl$_3$ and water. The organic layer was washed with saturated NH$_4$Cl aq. and dried over MgSO$_4$. After removal of the solvent under reduced pressure, the residue solid was washed with hexane to give the corresponding butadiyne 5$^{[1]}$ (75% yield (2 steps from 3), 1.48 g, 5.64 mmol).

A solution of 5 (1.58 g, 6.02 mmol) in CH$_2$Cl$_2$ (40 mL) was slowly added a solution of iodine (6.10 g, 24.0 mmol) in CH$_2$Cl$_2$ (10 mL) stirred at room temperature for 22 h under a nitrogen atmosphere. The reaction mixture was diluted with saturated Na$_2$S$_2$O$_3$ aq.. The precipitation was washed with water and methanol. The solid was purified by recrystallization (CHCl$_3$) to give the corresponding diiodobenzene derivatives 6$^{[2]}$ (75% yield, 2.21 g, 4.52 mmol).
2-2. General Procedure for Synthesis of 1 (GP1).

A solution of 6 (1.0 equiv.), aromatic acetylene (3.0 equiv.), Pd(PPh₃)₄ (5 mol%), and CuI (5 mol%) in degassed triethylamine and degassed toluene (1:1) was stirred at 100 °C for overnight under a nitrogen atmosphere. After cooling to room temperature, hexane was added to the reaction mixture and then the precipitation was washed with hexane, methanol, and cooling CHCl₃. Further purification was carried out by recrystallization to give the corresponding diethynyl bibenzofuran derivatives 1.

A solution of 1,4-diiodo-2,5-dimethoxybenzene (2.92 g, 7.50 mmol), phenylacetylene (2.30 g, 22.5 mmol), Pd(PPh₃)₄ (5 mol%; 0.435 g, 0.38 mmol), and CuI (5 mol%; 0.076 g, 0.40 mmol) in degassed triethylamine (25 mL) and degassed THF (25 mL) was stirred at 40 °C for 22 h under a nitrogen atmosphere. The reaction mixture was diluted with AcOEt and washed with saturated NH₄Cl aq. and brine. The organic layer was dried over MgSO₄. After removal of the solvent under reduced pressure, the residue was washed with hexane to give the corresponding diethynylbenzene derivatives 7[3] (60% yield, 1.52 g, 4.49 mmol).

A solution of 7 (0.679 g, 2.01 mmol) in CH₂Cl₂ (24 mL) was slowly added a solution of iodine (3.06 g, 12.04 mmol) in CH₂Cl₂ (8 mL) stirred at room temperature for 16 h under a nitrogen atmosphere. The reaction mixture was diluted with AcOEt and washed with saturated Na₂S₂O₃ aq. and then the resulting insoluble solid was washed with water and MeOH to give the corresponding diiodobenzene derivatives 8[3] (85% yield, 0.953 g, 1.70 mmol).

A solution of 8 (1.0 equiv.), aromatic acetylene (4.0 equiv.), Pd(PPh₃)₄ (5 mol%), and CuI (5 mol%) in degassed triethylamine and degassed THF (1:1) was stirred at 60 °C (2a, 2b, 2d) or degassed triethylamine and degassed toluene (1:1) was stirred at 100 °C (2c) for overnight under a nitrogen atmosphere. After filtration of the reaction mixture, the resulting solid was washed with MeOH, hexane, and CHCl₃. The crude 2 was purified by reprecipitation (hexane and CHCl₃) to give the corresponding diethynyl benzodifuran derivatives 2. Further purification was carried out by recyclable preparative HPLC, if necessary.

3,3'-bis((4-methoxyphenyl)ethynyl)-2,2'-bibenzofuran (1a): Yellow solid. mp 244-245 °C, ¹H-NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.0 Hz, 2H), 7.57-7.50 (m, 6H), 7.40 (dd, J = 7.6 Hz, 2H), 7.35 (dd, J = 7.6 Hz, 2H), 6.89 (d, J = 9.2 Hz, 4H), 3.84 (s, 6H). ¹³C-NMR data could not be obtained due to quite low solubility. IR (KBr) 3434, 2925, 2207, 1604, 1496, 1438, 1289, 1246, 1173, 1153, 1140, 1026, 831, 741, 692 cm⁻¹. MS (APCI) m/z 494 (M⁺); HRMS (APCI): calcd for C₃₄H₂₂O₄: 494.1518 found 494.1514.
3,3'-bis(\(p\)-tolylethynyl)-2,2'-bibenzofuran (1b): Yellow solid. mp 237-238 °C. \(^1\)H-NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.82 (d, \(J = 8.0\) Hz, 2H), 7.59-7.53 (m, 6H), 7.42 (td, \(J = 7.6\) Hz, 1.2 Hz, 2H), 7.36 (td, \(J = 7.6\) Hz, 0.8 Hz, 2H), 7.18 (d, \(J = 8.0\) Hz, 4H), 2.39 (s, 6H). \(^1\)C-NMR (400 MHz, CDCl\(_3\)) \(\delta\) 148.0, 138.6, 132.3, 130.7, 129.9, 128.9, 128.4, 127.1, 124.5, 122.9, 121.8, 120.4, 110.7, 103.4, 98.2, 79.6, 21.0. IR (KBr) 2921, 2851, 2203, 1494, 1441, 1338, 1242, 1153, 1139, 875, 809, 740 cm\(^{-1}\). MS (APCI) m/z 462 (M\(^+\)); HRMS (APCI): calcd for C\(_{34}\)H\(_{22}\)O\(_2\): 462.1620 found 462.1616.

3,3'-bis(phenylethynyl)-2,2'-bibenzofuran (1c): Yellow solid. mp 234-235 °C. \(^1\)H-NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.83 (d, \(J = 7.2\) Hz, 2H), 7.64 (dd, \(J = 7.2\) Hz, 4H), 7.58 (d, \(J = 8.0\) Hz, 2H), 7.43 (t, \(J = 6.8\) Hz, 2H), 7.39-7.36 (m, 8H). \(^1\)C-NMR (400 MHz, CDCl\(_3\)) \(\delta\) 154.5, 148.1, 131.6, 128.8, 128.5, 128.4, 126.4, 123.8, 123.4, 120.9, 111.6, 103.3, 98.0, 80.2, IR (KBr) 3443, 3057, 2207, 1483, 1473, 1442, 1337, 1240, 1153, 1140, 751, 741, 687 cm\(^{-1}\). MS (APCI) m/z 434 (M\(^+\)); HRMS (APCI): calcd for C\(_{40}\)H\(_{26}\)O\(_2\): 434.1307. found 434.1307.

3,3'-bis((4-cyanophenyl)ethynyl)-2,2'-bibenzofuran (1d): Yellow solid. mp >300 °C. \(^1\)H-NMR (400 MHz, DMSO-\(d_6\), 150 °C) \(\delta\) 7.86 (d, \(J = 7.6\) Hz, 2H), 7.81-7.76 (m, 8H), 7.72 (d, \(J = 8.4\) Hz, 7.54 (dd, \(J = 7.6\) Hz, 2H),
7.46 (dd, J = 7.6 Hz, 2H). 13C-NMR data could not be obtained due to quite low solubility. IR (KBr) 3441, 3057, 2210, 1636, 1602, 1489, 1442, 1339, 1242, 1156, 1144, 876, 835, 745 cm$^{-1}$. MS (APCI) m/z 484 (M$^+$); HRMS (APCI): calcd for C$_{34}$H$_{16}$N$_2$O$_2$: 484.1212 found 484.1201.

3,7-di-((4-methoxyphenyl)ethynyl)-2,6-diphenylbenzo[1,2-b:4,5-b´]difuran (2a); Yellow solid; m.p. 284-285 °C; 1H-NMR (CDCl$_3$, 400 MHz) δ 8.36 (d, J = 8.0 Hz, 4H), 7.80 (s, 2H), 7.59 (d, J = 8.8 Hz, 4H), 7.51 (t, J = 8.4 Hz, 4H), 7.41 (t, J = 7.2 Hz, 2H), 6.95 (d, J = 8.8 Hz, 4H), 3.88 (s, 6H); 13C-NMR (CDCl$_3$, 400 MHz)δ 159.8, 156.7, 150.9, 133.0, 130.3, 129.1, 128.7, 126.0, 114.2, 101.52, 101.50, 99.8, 97.2, 55.4; IR (KBr) 3058, 3024, 2938, 2868, 2533, 2206, 1945, 1869, 1609, 1513, 1491, 1464, 1447, 1426, 1391, 1290, 1253, 1174, 1115, 1027, 888, 837, 766, 683, 533 cm$^{-1}$; MS (APCI) m/z 570 (M$^+$); HRMS (APCI): calcd for C$_{40}$H$_{26}$O$_4$: 570.1831 found 570.1815.

3,7-di-((p-tolylethynyl)-2,6-diphenylbenzo[1,2-b:4,5-b´]difuran (2b): Yellow green solid. mp >300 °C. 1H-NMR (CDCl$_3$, 400 MHz) δ 8.37 (d, J = 8.4 Hz, 4H), 7.81 (s, 2H), 7.56 (d, J = 8.4 Hz, 4H), 7.52 (t, J = 8.0 Hz, 4H), 7.42 (tt, J = 7.6 Hz, 1.6 Hz, 2H), 7.24 (d, J = 8.8 Hz, 4H), 2.42 (s, 6H); 13C-NMR (CDCl$_3$, 400 MHz) δ150.9, 138.7, 131.4, 129.3, 129.2, 129.1, 128.72, 128.69, 126.00, 125.98, 120.3, 101.5, 99.7, 97.4, 21.6, IR (KBr) 3053, 3027, 2919, 2861, 2209, 1888, 1685, 1600, 1562, 1513, 1492, 1427, 1395, 1360, 1251, 1152, 1113, 1095, 810, 767, 687, 505 cm$^{-1}$; MS (APCI) m/z 538 (M$^+$); HRMS (APCI): calcd for C$_{40}$H$_{26}$O$_2$: 538.1933. found 538.1914.
3,7-di-(phenylethynyl)-2,6-diphenylbenzo[1,2-\(b\):4,5-\(b'\)]difuran (2e); Yellow green solid. mp 296-297 °C.

\(^1\)H-NMR (CDCl\(_3\), 400 MHz) δ 8.36 (d, \(J=7.6\) Hz, 4H), 7.80 (s, 2H), 7.66 (d, \(J=7.2\) Hz, 4H), 7.52 (t, \(J=7.2\) Hz, 4H), 7.43-7.42 (m, 8H); \(^{13}\)C-NMR (CDCl\(_3\), 400 MHz) δ 150.9, 131.6, 130.16, 130.15, 129.3, 128.73, 128.72, 128.5, 126.0, 123.3, 101.5, 99.6, 99.5, 97.2, 81.0. IR (KBr) 3055, 3031, 2208, 1950, 1879, 1801, 1750, 1671, 1600, 1584, 1567, 1482, 1426, 1391, 1247, 1153, 1114, 1069, 839, 764, 688 cm\(^{-1}\). MS (APCI) m/z 510 (M\(^+\)); HRMS (APCI): calcd for C\(_{38}\)H\(_{22}\)O\(_2\): 510.1620 found 510.1616.

3,7-di-((4-cyanophenyl)ethynyl)-2,6-diphenylbenzo[1,2-\(b\):4,5-\(b'\)]difuran (2d); Yellow solid. mp >300 °C.

\(^1\)H-NMR (DMSO-\(d_6\), 400 MHz, 150 °C) δ 8.28 (d, \(J=8.0\) Hz, 2H), 8.02-7.95 (m, 1H), 7.88-7.87 (m, 2H), 7.79-7.74 (m, 1H), 7.66-7.51 (m, 4H). \(^{13}\)C-NMR data could not be obtained due to quite low solubility. IR (KBr) 3448, 2991, 2924, 2378, 2342, 2222, 2206, 1655, 1636, 1228, 1092, 957, 809 cm\(^{-1}\); MS (APCI) m/z 560 (M\(^+\)); HRMS (APCI): calcd for C\(_{40}\)H\(_{20}\)N\(_2\)O\(_2\): 560.1525 found 560.1495.
3. Computational Study of 1 and 2

Figure S1. Plot of the Kohn-Sham HOMO and LUMO energy levels of 1 by using B3LYP/6-31G(d) level.

Figure S2. Plot of the Kohn-Sham HOMO and LUMO energy levels of 2 by using B3LYP/6-31G(d) level.
4. References

Fig. S1. 1H (400 MHz) spectrum of 1a in CDCl₃
Fig. S2. 1H (400 MHz) and 13C-NMR (100 MHz) spectra of 1b in CDCl₃
Fig. S3. 1H (400 MHz) and 13C-NMR (100 MHz) spectra of 1c in CDCl₃
Fig. S4. 1H (400 MHz) spectrum of 1d in DMSO-d$_6$
Fig. S5. 1H (400 MHz) and 13C-NMR (100 MHz) spectra of 2a in CDCl₃.
Fig. S6. 1H (400 MHz) and 13C-NMR (100 MHz) spectra of 2b in CDCl₃
Fig. S7. 1H (400 MHz) and 13C-NMR (100 MHz) spectra of 2c in CDCl₃
Fig. S8. 1H (400 MHz) spectrum of 2d in DMSO-d$_6$