Supporting Information

EVALUATION OF 4,4'-DIAMINODIPHENYLMETHANE AS A PLATFORM FOR PROTON, pH, AND METAL ION RESPONSIVE FLUORESCENT PROBE.

Takaaki Miyazaki*, Shunsaku Watanabe, Shoko Oka, Taiyou Tsutumi, and Osamu Hayashida*

Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; email: t.miyazaki@fukuoka-u.ac.jp

Table of Contents

1. General Information ...---S2
2. Proton responsiveness ...---S2
3. Metal sensing ..---S4
4. NMR spectra ...---S7
1. General Information
Chemicals and reagents were commercially available and used without further purification, except for 2-formyl pyridine, which was purified by alumina and silica gel. 1H, and 13C NMR spectra were measured on a Bruker Advance III 400 spectrometer. Chemical shifts were reported in part per million (ppm) relative to TMS (0.00 ppm for 1H and 13C). The coupling constants (J) were given in hertz (Hz). MALDI-TOF mass was performed on Bruker autoflex speed. Elemental analysis was carried out with JSL JM11. Absorption spectra were recorded on a PerkinElmer Lambda 35. Fluorescence spectra were measured on a JASCO FP-750.

Relative quantum yields of 1 were estimated from eq. 1 using anthracene as a standard (in EtOH, 27%, $\lambda_{ex} = 340$ nm).

$$\phi_i = \frac{F_i f_i n_i^2}{F_s f_s n_s^2} \phi_s$$

where ϕ_i and ϕ_s are the quantum yields of the sample and the standard, respectively. F_i and F_s are the area of the fluorescence spectra of the sample and the standard, respectively.

2. Proton responsiveness

Figure S1. Absorption spectra of 1 (50 μM) in (a) CH$_3$CN, (b) CH$_2$Cl$_2$, and (c) toluene.

Figure S2. The reversible change of the fluorescent behavior of 1 (50 μM) by using TFA and DBU in CH$_3$CN and CH$_3$OH (1:1 v/v) ($\lambda_{ex} = 400$ nm).
Table S1. Relative quantum yield of 1 using anthracene in EtOH as a reference (27%, $\lambda_{ex} = 340$ nm).

<table>
<thead>
<tr>
<th></th>
<th>$\Phi / %$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$CN</td>
<td>< 0.01</td>
</tr>
<tr>
<td>CH$_3$CN + TFA</td>
<td>0.03</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>< 0.01</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$ + TFA</td>
<td>0.05</td>
</tr>
<tr>
<td>Toluene</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Toluene + TFA</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Figure S3. The partial 1H NMR spectra of 1 in CDCl$_3$ before (top) and after (bottom) the addition of TFA.
4. Metal sensing

Figure S4. MALDI-TOF MS of (a) 1py and (b) 1pyZn. Dithranol was used as a matrix.

Figure S5. The partial 1H NMR spectra of the mixture of 1 and 1py (top) and the mixture of 1 and 1pyZn (bottom) in CDCl$_3$.
Figure S6. The partial 1H-1H cosy spectrum of 1py in CDCl$_3$.

Figure S7. MALDI-TOF MS of (a) 1pyZn and (b) 1pyNi after fluorescence measurement. Dithranol was used as a matrix.
Figure S8. Fluorescence spectra of pyCHO and Zn(OAc)$_2$•2H$_2$O (blue), Cu(OAc)$_2$•H$_2$O (red), and Ni(OAc)$_2$•4H$_2$O (black) in MeCN and MeOH (1:1 v/v) after mixing for 1 hour.
4. NMR spectra

Figure S9. 1H NMR spectra of 2 in CDCl$_3$.

Figure S10. 13C NMR spectra of 2 in CDCl$_3$.
Figure S11. 1H NMR spectra of 3 in CDCl$_3$.

Figure S12. 13C NMR spectra of 3 in CDCl$_3$.

S8
Figure S13. 1H NMR spectra of 4 in CDCl$_3$.

Figure S14. 13C NMR spectra of 4 in CDCl$_3$.
Figure S15. 1H NMR spectra of 1 in CDCl$_3$.

Figure S16. 13C NMR spectra of 1 in CDCl$_3$.