SYNTHESIS OF DIBROMO COMPOUNDS CONTAINING 2,6-DIOXABICYCLO[3.1.1]HEPTANE SIMILAR TO CORE MOIETY OF THROMBOXANE A2

Yoshihiko Nokura, Atsuo Nakazaki, and Toshio Nishikawa*

Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601; E-mail: nisikawa@agr.nagoya-u.ac.jp

Abstract – Thromboxane A2, a potent platelet aggregation factor, contains a labile 2,6-dioxabicyclo[3.1.1]heptane as the core moiety. Dibromo compounds with a similar core structure were synthesized by the cyclization of tribromides derived from D-glucal.

While investigating the synthesis of crambescine B, a guanidine-containing marine alkaloid, we accidentally observed the formation of *spiro*-oxetane acetal 2 when intermediate 1 was treated with PyHBr3 and K2CO3 in CH2Cl2-H2O, a condition of cascade cyclization developed in our laboratory (Scheme 1). Although the yield was low, to our surprise, the product was stable enough to allow for purification by column chromatography using a neutralized silica gel. A similar reaction was also observed in the case of a simpler substrate 3, indicating that the guanidine group was not responsible for this cyclization. To our knowledge, these compounds are the first and only examples of oxetane acetal with a 1,5-dioxaspiro[3.4]octane ring system synthesized to date. The unusual stability of the strained oxetane acetal can be attributed to the strong electron-withdrawing characteristics of the bromo substitutions.

Scheme 1. Formation of *spiro*-oxetane acetal by Br⁺-triggered cascade reaction
These observed reactions reminded us of the synthesis of thromboxane A₂ (TXA₂) by Still in 1985⁵ and prompted us to investigate the construction of the core structure of TXA₂ by a similar bromocyclization. This paper describes our efforts towards the synthesis of an oxetane acetal with a structure similar to that of the core of TXA₂.

Figure 1. Thromboxane A₂ (TXA₂, 5) and its difluoro analogue 6

Thromboxane A₂ (5 in Figure 1) is an endogenous potent platelet aggregation factor that is enzymatically synthesized from arachidonic acid through prostaglandin H₂.⁶ Because of its strained oxetane acetal structure, TXA₂ is highly unstable and degrades to thromboxane B₂ (TXB₂), an inactive form, in a few minutes (half-life at 37 °C is approximately 30 s). Therefore, it was believed that the chemical synthesis of TXA₂ (5) would be difficult. However, in 1985, Still was able to synthesize TXA₂ through bromo-substituted TXA₂, in which the oxetane-acetal moiety was constructed by an intramolecular Mitsunobu type reaction (Scheme 2). Fried also developed the same synthetic strategy and synthesized difluoroTXA₂ (6), a stable analogue of TXA₂, by an intramolecular Williamson ether synthesis.²

Scheme 2. Previous synthesis of the oxetane-acetal moiety of TXA₂ (5) and its difluoro analogue 6

We assumed that it would be possible to construct the core structure A of TXA₂ through an attack of the internal hydroxy group at the C-3 position at the oxonium carbon of intermediate B, which could be generated from glycal C by a bromo cation (Scheme 3). The bromo substituent(s) of the products should stabilize the strained oxetane acetal of product A. Substrate C could be synthesized from D-glucal, a readily available starting material.
The syntheses of the substrates as C for the bromocyclization are shown in Scheme 4. Tri-O-acetyl-D-glucal (11), a commercially available starting material, was transformed into the corresponding tribenzyl ether 12 in two steps by conventional protecting-group manipulation. Based on a study by Kirschning,8 compound 12 was transformed into 15a and 15b in two steps, namely, selective oxidation with (diacetoxyiodo)benzene (DAIB) and subsequent Luche reduction in CH2Cl2-EtOH as the solvents.9,10 The corresponding 2-bromo substrates 16a and 16b were prepared by the reduction of compound 14, which was obtained by the bromination of 13 with NBS. The Luche reduction of 14 in MeOH gave 16a and 16b in yields of 57% and 28%, respectively.11

With these substrates in hand, the bromocyclization of 15a was attempted first. When 15a was treated with PyHBr3 and K2CO3 in CH2Cl2-H2O—as stated above, these conditions for the cascade bromocyclization were developed in our laboratory—a complex mixture was obtained (Scheme 5). Unfortunately, despite an extensive examination of the conditions, the desired cyclized product could not be obtained.
Next, we investigated the cyclization of 16a and 16b as substrates. Substrate 16a was treated with PyHBr₃ under the above-mentioned conditions; this resulted in the unexpected tribromide 17 (45%) as a single isolable product (Scheme 6). When the diastereomer 16b was exposed to the same conditions, tribromide 18 was obtained in a 76% yield. Tribromides 17 and 18 were both obtained as a single diastereomer. The unusual stability of these products may also be attributed to bromo substitution at the C-2 position. Although the configurations at the C-1 position were not determined, we propose α configuration of bromo atom at the C-1 position due to the anomeric effect as well as axial attack of bromide from the less hindered α-face to the oxonium ion intermediates generated. In order to suppress the competitive addition of the bromide ion (Br⁻) to the oxonium ion intermediates, other bromination reagents that did not contain Br⁻ were examined. No reaction was observed when NBS in CH₂Cl₂ was used, while reactions with N-bromosaccharin and Br(collidine)₂PF₆ in CH₂Cl₂ resulted in complex mixtures. These results imply that oxonium intermediates were generated. However, trapping by the intramolecular hydroxy group at the C-3 position was difficult, probably because of the highly strained structure of the oxetane acetal of the desired cyclized products.

Scheme 6. Attempted bromocyclization of 16a and 16b (configurations at the C-1 position are proposed)

Since tribromides 17 and 18 were obtained readily from the above reactions, several types of cyclizations using these tribromides were explored. We found that the intramolecular Koenigs-Knorr synthesis of 17 with Ag₂O produced oxetane acetal 19 in a yield of 30% (Scheme 7). On the other hand, the intramolecular Williamson ether synthesis of 18 with Et₃COK resulted in 20 in a good yield, while the reaction of 17 under the conditions for the Williamson ether synthesis process did not produce the cyclized product 19 at all. The resulting oxetane-acetal products 19 and 20 were stable enough to allow for purification by silica gel chromatography, as anticipated.
In summary, we investigated the synthesis of the oxetane acetal core structure of TXA$_2$ using a bromocyclization process developed in our laboratory. Unfortunately, the reactions of 3-hydroxyglycals under the above-described conditions did not yield the desired oxetane acetals but produced tribromides instead. However, these tribromides could eventually be transformed into the desired oxetane acetals 19 and 20 under the Koenigs-Knorr and Williamson ether synthesis conditions, respectively. To our knowledge, the Koenigs-Knorr condition is the first example for construction of the strained oxetane acetal. This study should provide an easy route for the synthesis of a variety of dibromo compounds containing oxetane acetal structures similar to TXA$_2$ from readily available glycals.

EXPERIMENTAL

General: Melting points (MP) were recorded on a Yanaco MP-S3 melting point apparatus and are not corrected. Optical rotations were measured on a JASCO DIP-370 digital polarimeter. Proton nuclear magnetic resonance (1H NMR) spectra were recorded on a Bruker AVANCE-400 (400 MHz) spectrometer. NMR samples were dissolved in CDCl$_3$ or C$_6$D$_6$, and chemical shifts are reported in ppm relative to the residual undeuterated solvent (CDCl$_3$ as δ = 7.26 ppm, C$_6$D$_6$ as δ = 7.16 ppm). 1H NMR data were reported as follows; chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broadened, m = multiplet), coupling constant, and assignment. Carbon nuclear magnetic resonance (13C NMR) spectra were recorded on a Bruker AVANCE-400 (100 MHz) spectrometer. The samples were dissolved in CDCl$_3$ or C$_6$D$_6$, and chemical shifts are reported in ppm relative to the residual undeuterated solvent (CDCl$_3$ as δ = 77.1 ppm, C$_6$D$_6$ as δ = 128.0 ppm). All NMR were measured at 300 K. High resolution mass spectra (HRMS) were recorded on an Applied Biosystems Mariner Biospectrometry Workstation and reported in m/z. Reactions were monitored by thin-layer chromatography (TLC) on 0.25 mm silica gel coated glass plate 60 F$_{254}$ (Merck, #1.05715). Silica gel 60 (spherical, particle size 40-50 µm, Kanto Chemical Co., Inc.) was used for flash-column chromatography. Unless otherwise noted, non-aqueous reactions were carried out in flame-dried glasswares under nitrogen or argon. Dry CH$_2$Cl$_2$
and THF were purchased from Kanto Chemical Co., Inc. All other commercially available reagents were used as received.

(2R,3R)-3-Benzylxoy-2-benzyloxymethyl-5-bromo-3,4-dihydropyran-4-one (14). A two-necked round-bottomed flask was charged with enone 13 (0.972 g, 3.00 mmol) and dry DMF (10 mL). To the solution was added NBS (561 mg, 3.15 mmol) at 0 °C and then stirred at 0 °C for 1.5 h. Stirring was continued at room temperature for an additional 2 h. The reaction was quenched with sat. aq. NaHCO₃ solution (30 mL), and extracted with AcOEt (15 mL x 3). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure to afford crude product. The same reaction was conducted using 0.324 g of enone 13 under the same procedure. The combined crude product was purified by flash column chromatography (silica gel 100 g, AcOEt/hexane 1:4 to 2:1) to afford bromo enone 14 (1.16 g, 72%) as a colorless oil.

[α]D²² +351 (c 1.00, CHCl₃). ¹H NMR (400 MHz, C₆D₆) δ 3.26 (1H, dd, J = 11.0, 2.5 Hz, H-7), 3.33 (1H, dd, J = 11.0, 3.5 Hz, H-7), 3.90 (1H, ddd, J = 11.0, 3.5, 2.5 Hz, H-2), 3.99 (1H, d, J = 11.0 Hz, H-3), 4.08 (1H, d, J = 12.0 Hz, -OC₆H₅H), 4.15 (1H, d, J = 12.0 Hz, -OCH₆H₅), 4.42 (1H, d, J = 11.0 Hz, -OC₆H₅H), 5.03 (1H, d, J = 11.0 Hz, -OCH₆H₅), 6.89 (1H, s, H-6), 7.04-7.19 (8H, m, Ph), 7.23-7.27 (2H, m, Ph). ¹³C NMR (100 MHz, CDCl₃) δ 67.8, 73.4, 74.6, 74.9, 81.9, 100.5, 127.9, 128.2, 128.6, 128.7, 138.0, 138.2, 160.5, 186.2. HR-MS (ESI, positive): calcd. for C₂₀H₁₉O₄BrNa [M+Na]⁺: 425.0359; found, 425.0369.

(2R,3S,4R)-3-Benzylxoy-2-benzyloxymethyl-5-bromo-3,4-dihydropyran-4-ol (16a) and (2R,3S,4S)-3-Benzylxoy-2-benzyloxymethyl-5-bromo-3,4-dihydropyran-4-ol (16b). A two-necked round-bottomed flask was charged with bromo enone 14 (179 mg, 0.444 mmol) and cerium(III) chloride heptahydrate (280 mg, 0.752 mmol), and connected to a vacuum/nitrogen line. The flask was evacuated and then filled with nitrogen. MeOH (5 mL) was added to the mixture and then the mixture was stirred at -78 °C for 30 min. NaBH₄ (19.0 mg, 0.502 mmol) was added to the mixture at -78 °C and then the reaction mixture was stirred at -78 °C for 1.5 h. The reaction was quenched with sat. aq. NH₄Cl solution (10 mL), and extracted with AcOEt (15 mL x 3). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel 10 g, Et₂O/hexane 1:2 to 1:1) to afford alcohol 16a (104 mg, 57%) and its diastereomer 16b (51.6 mg, 28%) as a colorless solid, respectively.

16a: [α]D²³ +153 (c 1.00, CHCl₃). Mp 53-55 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.62 (1H, d, J = 2.0 Hz, -OH), 3.81 (2H, d, J = 3.0 Hz, H-7), 3.92 (1H, dd, J = 10.5, 4.0 Hz, H-3), 4.07 (1H, dt, J = 10.5, 3.0 Hz, H-2), 4.28 (1H, dd, J = 4.0, 2.0 Hz, H-4), 4.55 (1H, d, J = 12.0 Hz, -OCH₆H₅), 4.60 (1H, d, J = 11.0 Hz, -OCH₆H₅), 4.63 (1H, d, J = 12.0 Hz, -OCH₆H₅), 4.64 (1H, d, J = 11.0 Hz, -OCH₆H₅), 6.69 (1H, s, H-6), 7.24-7.37 (10H, m, Ph). ¹³C NMR (100 MHz, CDCl₃) δ 66.8, 68.1, 72.3, 72.7, 73.8, 74.0, 97.8,
128.0, 128.1, 128.2, 128.5, 128.6, 128.8, 137.1, 137.9, 145.4. HR-MS (ESI, positive): calcd. for C20H21O4BrNa [M+Na]+: 427.0515; found, 427.0500.

16b: [α]D23 +75 (c 1.00, CHCl3). Mp 72-77 °C. 1H NMR (400 MHz, CDCl3) δ 2.65 (1H, d, J = 5.5 Hz, -OH), 3.78 (2H, brd, J = 3.5 Hz, H-7), 3.86 (1H, dd, J = 7.5, 5.0 Hz, H-3), 4.13 (1H, dt, J = 7.5, 3.5 Hz, H-2), 4.30 (1H, t, J = 5.0 Hz, H-4), 4.55 (1H, d, J = 12.0 Hz, -OCHaHbPh), 4.60 (1H, d, J = 12.0 Hz, -OCHaHbPh), 4.66 (1H, d, J = 12.0 Hz, -OCHaHbPh), 4.83 (1H, d, J = 12.0 Hz, -OCHaHbPh), 6.67 (1H, s, H-6), 7.24-7.38 (10H, m, Ph). 13C NMR (100 MHz, CDCl3) δ 68.9, 71.3, 73.5, 73.9, 77.1, 101.5, 127.9, 128.0, 128.1, 128.6, 128.7, 137.6, 137.9, 144.0. HR-MS (ESI, positive): calcd. for C20H21O4BrNa [M+Na]+: 427.0515; found, 427.0505.

(4R,5S,6R)-5-Benzylxylo-6-benzyloxymethyl-2,3,3-tribromotetrahydropyran-4-ol (17). A two-necked round-bottomed flask was charged with alcohol 16a (60.0 mg, 0.148 mmol), CH2Cl2 (5 mL) and water (5 mL), and cooled at 0 °C. To the solution were added K2CO3 (204 mg, 1.48 mmol) and PyHBr3 (236 mg, 0.738 mmol). The reaction mixture was stirred at 0 °C for 8 min, and then quenched by addition of aqueous Na2SO3 solution (1 M, 1 mL) and sat. aq. NaHCO3 solution (1 mL). The resulting mixture was extracted with AcOEt (10 mL x 2) and dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel 10 g, AcOEt/hexane 1:4 to 2:1) to afford tribromide 17 (38.4 mg, 45%) as a colorless oil. [α]D23 +151 (c 1.00, C6D6). 1H NMR (400 MHz, C6D6) δ 2.71 (1H, d, J = 3.0 Hz, -O-H), 3.41 (1H, d, J = 11.5 Hz, H-7), 3.60 (1H, dd, J = 11.5, 3.0 Hz, H-7), 4.12 (1H, d, J = 11.0 Hz, -OCHaHbPh), 4.20 (1H, d, J = 11.0 Hz, -OCHaHbPh), 4.23 (1H, d, J = 12.0 Hz, -OCHaHbPh), 4.33 (1H, brs, H-4), 4.40 (1H, d, J = 12.0 Hz, -OCHaHbPh), 4.38-4.44 (1H, m, H-6), 4.58 (1H, dd, J = 10.5, 3.5 Hz, H-5), 6.45 (1H, s, H-2), 7.50-7.76 (8H, m, Ph), 7.23 (2H, d, J = 7.5 Hz, Ph). 13C NMR (100 MHz, C6D6) δ 67.1, 68.1, 70.7, 71.0, 71.5, 73.6, 74.6, 89.4, 127.9, 128.18, 128.23, 128.6, 128.7, 137.6, 138.8. HR-MS (ESI, positive): calcd. for C20H21Br3O4Na [M+Na]+: 584.8882; found, 584.8881.

(4S,5S,6R)-5-Benzylxylo-6-benzyloxymethyl-2,3,3-tribromotetrahydropyran-4-ol (18). A two-necked round-bottomed flask was charged with alcohol 16b (30 mg, 0.074 mmol), CH2Cl2 (2 mL) and water (2 mL), and cooled at 0 °C. To the solution were added K2CO3 (61 mg, 0.44 mmol) and PyHBr3 (71 mg, 0.22 mmol). The reaction mixture was stirred at 0 °C for 5 min, and then quenched by addition of aqueous Na2SO3 solution (1 M, 1 mL). The resulting mixture was extracted with AcOEt (10 mL x 2) and dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel 10 g, AcOEt/hexane 1:4 to 1:3) to afford tribromide 18 (32 mg, 76%) as a colorless oil. [α]D24 +155 (c 1.00, C6D6). 1H NMR (400 MHz, C6D6) δ 2.11 (1H, d, J = 5.0 Hz, -OH), 3.36 (1H, dd, J = 11.5, 2.0 Hz, H-7), 3.57 (1H, dd, J = 11.5, 3.5 Hz, H-7), 4.07-4.13 (2H, m, H-3 and H-5), 4.17-4.23 (1H,
m, H-6), 4.21 (1H, d, J = 12.0 Hz, -OCH₃H₃Ph), 4.38 (1H, d, J = 12.0 Hz, -OCH₃H₃Ph), 4.45 (1H, d, J = 11.5 Hz, -OCH₃H₃Ph), 4.77 (1H, d, J = 11.5 Hz, -OCH₃H₃Ph), 6.48 (1H, s, H-2), 7.04-7.26 (10H, m, Ph).

¹³C NMR (100 MHz, C₆D₆) δ 67.8, 72.0, 73.5, 75.4, 76.9, 77.4, 77.7, 93.4, 127.9, 128.2, 128.6, 138.7.

HR-MS (ESI, positive): calcd. for C₂₀H₂₁Br₃O₄Na [M+Na]⁺: 584.8882; found, 584.8860.

(1R,3R,4R,5R)-4-Benzylxoy-3-benzyloxymethyl-7,7-dibromo-2,6-dioxabicyclo[3.1.1]heptane (19). A two-necked round-bottomed flask was charged with tribromide 17 (24 mg, 0.042 mmol), finely powdered molecular sieves 4 Å (0.12 g) and CH₂Cl₂ (6 mL). To the solution was added Ag₂O (29 mg, 0.13 mmol), and the reaction mixture was stirred at room temperature for 12.5 h. The reaction was quenched with sat. aq. NaHCO₃ solution (5 mL). The resulting mixture was extracted with AcOEt (10 mL x 2) and dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel 4 g, AcOEt/hexane 1:9 to 1:4) to afford oxetane 19 (5.7 mg, 30%) as a colorless oil.

[α]D²⁴ +20 (c 0.29, C₆H₆). ¹H NMR (400 MHz, C₆D₆) δ 3.60 (1H, dd, J = 11.0, 4.0 Hz, H-8), 3.69 (1H, dd, J = 11.0, 6.0 Hz, H-8), 3.93 (1H, d, J = 12.0 Hz, -OCH₃H₃Ph), 4.01 (1H, d, J = 12.0 Hz, -OCH₃H₃Ph), 4.03 (1H, d, J = 6.5 Hz, H-4), 4.36 (2H, s, -OC₆H₄Ph), 4.49 (1H, td, J = 6.5, 3.5 Hz, H-3), 4.76 (1H, d, J = 4.0 Hz, H-5), 5.37 (1H, d, J = 4.0 Hz, H-1), 7.04-7.16 (8H, m, Ph), 7.26 (2H, d, J = 7.5 Hz, Ph). ¹³C NMR (100 MHz, C₆D₆) δ 57.0, 69.9, 71.6, 73.3, 74.9, 77.5, 92.0, 110.0, 127.9, 128.2, 128.5, 128.6, 129.0. HR-MS (ESI, positive): calcd. for C₂₀H₂₁Br₂O₄Na [M+Na]⁺: 506.9777; found, 506.9760.

(1S,3S,4R,5R)-4-Benzylxoy-3-benzyloxymethyl-7,7-dibromo-2,6-dioxabicyclo[3.1.1]heptane (20). A two-necked round-bottomed flask was charged with 3-ethyl-3-pentanol (20 mg, 0.17 mmol), dry THF (1 mL) and the powdered potassium hydride (6.0 mg, 0.14 mmol). The reaction mixture was stirred for 10 min at room temperature. To the mixture were added tribromide 18 (26 mg, 0.046 mmol) and THF (1 mL) and stirred for 10 min at room temperature. The reaction was quenched with sat. aq. NaCl solution (5 mL). The resulting mixture was extracted with AcOEt (10 mL x 2) and dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel 5 g, AcOEt/hexane 1:9 to 1:1) to afford oxetane 20 (15 mg, 65%) as a colorless oil.

[α]D²⁴ -45 (c 1.0, C₆H₆). ¹H NMR (400 MHz, C₆D₆) δ 3.38 (1H, dd, J = 10.5, 5.5 Hz, H-8), 3.43 (1H, dd, J = 10.5, 5.0 Hz, H-8), 4.04 (1H, dd, J = 5.5, 4.0 Hz, H-4), 4.14 (1H, d, J = 12.0 Hz, -OCH₃H₃Ph), 4.18 (1H, d, J = 12.0 Hz, -OCH₃H₃Ph), 4.25 (1H, d, J = 12.0 Hz, -OCH₃H₃Ph), 4.29 (1H, d, J = 12.0 Hz, -OCH₃H₃Ph), 4.61 (1H, t, J = 3.5 Hz, H-5), 4.85 (1H, q, J = 5.0 Hz, H-3), 5.43 (1H, d, J = 3.5 Hz, H-1), 7.04-7.18 (8H, m, Ph), 7.22 (2H, d, J = 7.5 Hz, Ph). ¹³C NMR (100 MHz, C₆D₆) δ 51.6, 72.2, 72.3, 73.4, 75.6, 76.9, 89.1, 110.9, 127.8, 127.9, 128.2, 128.6, 128.7, 138.2, 138.6. HR-MS (ESI, positive): calcd. for C₂₀H₂₂Br₂O₄Na [M+Na]⁺: 506.9777; found, 506.9760.
ACKNOWLEDGEMENTS
This work was supported by a Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science (JSPS) and by the Sumitomo Chemical Co., Ltd.

REFERENCES AND NOTES
9. The configurations of the C-3 position of 15a and 15b were determined by the following experiment: benzylation of 15b gave tribenzyl ether 12, thus 15a are the diastereomer at the C-3 position of 15b.
10. Synthesis of 15a and 15b by Luche reduction of 13 were reported by two groups such as Kirshnig (Ref. 8(b)) and Sridhar (Ref. 8(c)). Kirshnig reported that reduction of 13 with CeCl₃ and NaBH₄ in EtOH-CH₂Cl₂ gave a mixture of 15a and 15b in 38% yield (15a : 15b = 1 : 1.5) respectively, while Sridhar reported the same reaction in MeOH as a solvent gave 15a as a single diastereomer in 90% yield. We are not able to reproduce the result of Sridhar.
11. The configurations of the C-3 position of 16a and 16b were determined by transformation to the corresponding tribenzyl ethers (prepared using NaH, BnBr in DMF, rt) and comparing the ¹H NMR spectra reported in the following paper. See: S. Dharuman and Y. D. Vankar, Org. Lett., 2014, 16.
1172.
